米13回 昭和42年度

基本粒子の対称性に関する研究

| 広島大学教授 小 | 小 | 修 | 三 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 東京大学教授 | 山 | 口 | 嘉 夫 | 氏 |

推 薦 理 由

戦後宇宙線および加速器による高エネルギ一物性の発展にともなって，戦前知られていた素粒子（電子，核子，中間子等）の外に，数多くの種類の素粒子が目然界に存在するととが明らかに なってきた。目然界にとのよらに多種の素粒子が存在するととは，それらの多くのものは，実は複合的なぁのであって，より基本的な小数の粒子から組立てられているのではないかといら考え に導く。事実，坂田は，かつて，すべての重事子および中間子は，陽子，中性子，ラムダ粒子の三種の粒子の複合体であるといら，いわゆる坂田模型を提案した。小川氏及び山口氏は，一方は広島大学におねて，他方はジュネーブのセルンにおねて，小川氏は，1959年1月に，山口氏 は少しまくれて同じ年の6月に，しかし互に独立に，との坂田模型における三種の粒子の質量が ほぼ等しく，且ついずれもスピン $\frac{1}{2}$ をもつととに着目し，複合体そ対して荷電不変性を含む更に広汎な対称性の存在を仮定するととによって，複合粒子の種々の性質が理論的に導き出されると とを示した。

実際，広島を中心として小川氏は大貫義郎氏，池田峰夫氏らの協力を得て，とのために必要な美しん群論的方法を展開し（んわゆ るU（3）群）。また山口氏はセルンね於てより初歩的に同じ結果を導を出しっそれそよって何れも種々の興味ある結論を得ている。その一例を示せば，当時存在が知られていた $\pi^{+} \pi^{0} \pi^{-} K^{+} K^{0} \bar{K}^{0} \bar{K}$ の七種の擬スカラー中間子の他にいま一つの未知の擬スカラ一中性中間子が存在しってれら合計八種の中間子が一組となって，同じ性質をもつととが予測さ れたととである。との未知の中性中間子はその後1961年に実験的に見出されたといら。

との群論的方法はその後種々形を変えつゝも多くの人々によって複雑な素粒子現象の解明に用 いられている。現在多くの素粒子をより少数の基本的素粒子の複合体とみなす理論はまだ完成さ

为 3 回 昭和 42 年度

＂超高エネルギー現象におが，二次粒子の横向運動量（ P_{T} ）の重要性の提唱とその実験的研究＂

東京大学教授 西 村 純

推 薦 理 由
西村純氏の業績は素粒子論研究第12巻（1956）1号24頁の論文から始まりなす。当時 においてはすでに，いくらかの数の超高エネルギージェットが気球を使って高空で露出された原子核乾板でとらえられていました。測定条件の良かった2，3 のジェットについては二次粒子の エネルギーの測定が行なわれて，Fermi やLandau などの理論家によってジェット生成の理論が立てられました。理論的に生成の機構を考える時には重心系で論ずるわけですが，何分に もジェットの親エネルギーは高い（1012 eV 程度以上）ものですから，実験では正確な決定の方法がありま过ん。従って実験室系から重心系に直して考えるととがむずかしく，又あいまい にもなるわけです。同氏は実験室系と重心系をつなぐLorentz 変換によらない量—二次粒子の横向運動量（transverse momentum）に着目されました。との P_{T} はジェット生成のん ろいろな理論によりてかなり変ります。Fermiの理論ではジェット粒子によりては1GeV／C～100 $\mathrm{GeV} / \mathrm{C}$ 程度まで，かなり大幅に変りますが，Landau の理論では P_{T} はジェットの親の粒子 のエネルギーにも更ジェット粒子のエネルギーにも大してかわりはなく $1 \mathrm{GeV} / \mathrm{C}$ 前後であり ます。西村氏は今迄の精密測定がなされた2，3 ロジェットについて調べると同時に，深い地下で測定された μ 中間子，空気シャワーなどをも解析して P_{T} が $10^{9} \mathrm{eV} \sim 10^{13} \mathrm{eV}$（ジェット粒子のエネルギー）もの広い範囲にわたって大体一定（数百 MeV／c～数GeV／c）であるとと を見つけられました。その後同氏は数多くの協同研究者の中心になり指導者となってとの発見 の検証に進まれました。気球を使ったり，又高山にECC（Emulsion Cloud Chamber）を簬出されたりして実験を進められました。実験についても常に新らしん工夫をとらされ（原子核乾板とともに X 線フィルムを使用）， P_{T} の平均値は約 $400 \mathrm{MeV} / \mathrm{C}$ でその分布は（ $\mathrm{P}_{\mathrm{T}} / \mathrm{P}_{0}^{2}$ ） $\times \exp \left(-\mathrm{P}_{\mathrm{T}} / \mathrm{P}_{0}\right) d \mathrm{P}_{\mathrm{T}}$ の形をしていることを示されました。

西村氏の提唱された P_{T} をあととするジェットの解析は，広く世界の宇宙線学者だけでなく高エネルギー加速器による物理学者の間で採用され活発な研究が行なわれ，ジェット現象理解 のための新らしいモデルが次々と提晿されるよらになりました。

