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abstract

We present here some general features of granular materials,
of their importance, and of the conceptual difficulties which they
exhibit. For static problems, we insist on the difference between
textures, which represent frozen correlations between grains, and
stress tensors. We argue that in systems like heaps and silos, texture
is present, but the main features of the stress distribution do not
depend on it, and a description using an isotropic medium is a good
starting point. We also discuss avalanche flows, using a modified
version of the equations of Bouchaud et al, which might be valid
for thick avalanches.



1 Examples of granular matter

Solid particles are omnipresent : from the rings of Saturn to the snow
of our mountains. Granular materials represent a major object of hu-
man activities : as measured in tons, the first material manipulated
on earth is water ; the second is granular matter [1].

This may show up in very different forms : rice, corn, powders
for construction (the elinkers which will turn into concrete), pharma-
ceuticals, ---. In our supposedly modern age, we are extraordinarily
clumsy with granular materials. Changing the size, for instance, is dif-
ficult : crushing a granular system spends an unreasonable amount
of energy, and also leads to an extremely wide distribution of sizes.
Transporting a granular material is not easy : sometimes it flows like
an honest fluid, but sometimes (in hoppers) it may get stuck : the
reopening procedures are complicated — and often dangerous.

Even storage is a problem. The contents of bags can clump. Silos
can explode, because of two features :

a) Fine powders of organic materials in air often achieve the opti-
mum ratio of organic/ambient oxygen for detonations.

b) Most grains, when transported, acquire charge by collisions
(tribo electricity) : high voltages build up, and create sparks.

From a fundamental point of view, granular systems are also very
special. The general definition is based on size. We talk of particles
which are large enough for thermal agitation to be negligible. Granular
matter is a zero temperature system. In practice, Brownian motion
may be ignored for particles larger than one micrometer : this is our
threshold.

A heap of grains is metastable : ideally, on a flat horizontal support,
it should spread into a monolayer (to decrease its gravitational energy).
But it does not ! It can be in a variely of frozen states, and the detailed
stress distribution, inside the heap, depends on sample history. (We
come back to these static problems in section 2). The dynamics is



also very complex : my vision of avalanches is presented in section 3
— but it is probably naive and incomplete.

Not only we do have a great variety of grains : but also a great
variety of interactions, commanding the adhesion and the friction be-
tween grains. For instance, during dry periods, the grains of sand in
a dune have no cohesion. and under the action of wind. the dune
moves [2]. In more humid intervals. the grains stick together through
minute humidity patches, and they are not entrained by the wind : the
dunes stop, thus relieving the plantations from a serious threat. In the
present text, we shall concentrate on dry systems, with no cohesion.
which give us a relatively well defined model system.

2 Statics

2.1 The general problem

Over more than a hundred vears, the static distribution of stresses in
a granular sample has been analyzed in departments of Applied Me-
chanics, Geotechnical Engineering. and Chemical Engineering. What
is usually done is to determine the relations between stress and strain
on model samples, using the so called triaxial tests. Then. these data
are integrated into the problem at hand. with the material divided
into finite elements. There is one complication however. To define a
strain in a sample, we must know an unstrained reference state. This
is easily found for a conventional solid. which has a shape. It is less
clear for a powder sample : a) the way in which we filled the container
for the triaxial test may play a role. b) when we transpose the triaxial
data to the field, we are in fact assuming that our field material has
had one particular mechanical history.

I tend to believe that, in a number of cases, the problem of the
reference state can be simplified, because the sample has not experi-



P L
T T T i~ A
y4 /) I | | L/
A F g % B #Lr
b==r-=T-=1==F
g . %
A <
/ —V
/] + + Vv
A + + L H
/ + L
/ L/
/ * + L
/ + + “
A+ S
2 + /¢
] L
SIS S S S SSSS
—- 2R e

Fig. 1. A silo filled with grains, up to a height H. The grains
are assumed to undergo very small vertical displacements u, for
which an elastic description makes sense. They rub against the
lateral walls.



enced any dangerous stress since the moment, when the grains "froze”
together : this leads to a quasi elastic description, which is simple.
I will try to make these statements more concrete by choosing one
exempla : a silo filled with grain.

2.2 The Janssen picture for a silo

The problem of a silo (fig. 1) is relatively simple. The stresses, mea-
sured with gauges at the bottom, are generally much smaller than the
hydrostatic pressure pgH which we would have in a liquid (p : density,
g : gravitational acceleration, H : column height). A first modelisa-
tion for this was given long ago by Janssen [3] and Lord Rayleigh
[4].

a) Janssen assumes that the horizontal stresses in the granular
medium (o, 0y,) are proportional to the vertical stresses :

Oge = Oyy = kjo.zs = _kjp(zj (1)

where k; is a phenomenological coefficient, and p = —o.. is a pressure.

b) An important item is the friction between the grains and the
vertical walls. The walls endure a stress o,.. The equilibrium condition
for a horizontal slice of grain (area mR?, height dz) gives :

dp 2
—pPY + -6—27 - Eo’r:-: |r=R (2)

(where r is a radical coordinate, and = is measured positive towards
the bottom).

Janssen assumes that, everywhere on the walls, the friction force
has reached its maximum allowed value —given by the celebrated law
of L. da Vinci and Amontons [5]:

Orz = —UfO0pr = _lufk.'ip (3)



where p; is the coefficient of friction between grains and wall.
Accepting egs (1) and (3), and incorporating them into eq. (2),
Janssen arrives at :
dp
0z

This introduces a characteristic length :

_ R
2p gk

2p
+ —Rikjp = pg (4)

(5)
and leads to pressure profiles of the form :

P(2) = poo [1 — exp(—2/A)] (6)

with pe. = pgA. Near the free surface (z < A) the pressure is hydro-
static (p ~ pgz). But at larger depths (z > A)p — p: all the weight
1s carried by the walls.

2.3 Critique of the Janssen picture

This Janssen picture is simple, and does give the gross features of
stress distributions in silos. But his two assumptions are open to some
doubt.

a) If we take an (excellent) book describing the problem as seen
from mechanics department [6], we find that relation (1) is criticized
: a constitutive relation of this sort might be acceptable if z,y, z were
the principal axes of the stress tensor — but in fact, in the Janssen
model, we also need non vanishing off diagonal components o, 0,..

b) For the contact with the wall, it is entirely arbitrary to assume
full mobilisation of the friction, as in eq. [3]. In fact, any value o,./0,,
below threshold would be acceptable. Some tutorial examples of this
condition and of its mechanical consequences are presented in Duran’s
book [1]. T discussed some related ambiguities in a recent note [7].



2.4 Quasi elastic model

When a granular sample is prepared, we start from grains in mo-
tion, and they progressively {reeze into some shape : this defines our
reference state. For instance, if we fill a silo from the center, we have
continuous avalanches running towards the walls, which stop and leave
us with a certain slope.

As we shall see in section 3, this final slope, in a "closed cell”
geometry like the silo, is always below critical : we do not expect to
be close to an instability in shear. In situations like this, we may try
to describe the granular medium as a quasi elastic medium. The word
"quasi” must be explained at this point.

When we have a granular system in a certain state of compaction.
it will show a resistance to compression, measured by a macroscopic
bulk modulus A". But the forces are mediated by small contact regions
between two adjacent grains, and the contact areas increase with pres-
sure. The result is that A'(p) increases with p. For spheroidal objects
and purely Hertzian contacts, one would expect & ~ p'/3, while most
experiments are closed to K ~ p'/? [9]. Tentative interpretations of
the p!/2 law have been proposed [10] [11].

Thus, following [12], we assume now that we can use an elastic
description of the material in the silo —since we do not expect any slip
band in the silo. To start, we introduce a displacement field ul(r); for
instance, with a laboratory column, we would define a reference state
with a filled horizontal column, then rotate it to vertical, and measure
some very small displacements u of the grains towards the bottom.
The only non vanishing component of u is w..

We further assume, for the moment, that our medium can be de-
scribed locally as isotropic, with two Lame coefficients, or equivalently
a bulk modulus A, plus a shear modulus p. We can then write the ver-
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tical and horizontal constraints in the standard form :

= (ke )

Ozx = O-‘.U!J = (I{ - _) aaun (8)

Comparing the two, we do get a Janssen relation, with :

Oz SK —2u o
k' = = g —
7 o, 3K+44u l-—o (9)

where o is the Poisson ratio.

In our picture, K and g may still be functions of the sca,la,r pres-
sure —(0yy + 0y, + 0..), or equivalently of p(z). Here we assume, for
simplicity, that o is independent of p. This will have to be checked in
the future.

How do we get the stresses o,.7 We have :

ou,
=2u— (10)
and this imposes :
u, = ug(z) — %C’(z):r'2 (11)

where ug is the value at the center point, and the correction C is
obtained by comparison with eq. (2) :

0
o= 2uCr =% oo+ ) )

giving : 5
C(z) = (4n)™ [pg - 5’—’] (13)

The correction —1/2C7? in eq. (11) must be compared to uo.



Taking derivatives, we find :

2(CRY)  1d
e\ B) Lo o K (14)

ot

55 (uo) pdz A
thus, the whole description is strictly consistent if A > R or p; < 1.

2.5 State of partial mobilisation

At this stage, we have (to our best) answered the first critique to
the Janssen model. Let us now turn to the description of friction.
Following ref. [7], we are led to replace the macroscopic threshold law
of eq. [3] by a more detailed law, involving the displacement u, = u
near the wall surface. The idea is that, for very small distortions, the
friction force is harmonic — proportional to u. But when u is larger
than a certain anchoring length A, the friction force saturates to the
Amontons limit. In ref. [7], I used a specific model of bistable asperities
(Caroli Nozieres) to substantiate this assumption. But, more general
friction systems (involving some plastic deformations at the contact
points) are also compatible with this description. Thus, we are led to
write :

—0r; = Oppfisth (%) (15)

where () is a crossover function with ¥(z) ~ 2 for + — 0 and
P(x) — 1 for 2] > 1.

The few data available on macroscopic friction systems with smooth
surfaces suggest A ~ 1 micron (comparable to the size of an asperity).
For our grains, rubbing against the wall of a silo, A is largely unknown.
When |u| < A, we say that the friction is only partly mobilised.

a) Let us assume first that we have no mobilisation. Then p(z) is
hydrostatic : p = pgz, and we have a local deformation :

ou  pgz

0z K

(16)



where K= K +4u/3. This is associated with a boundary condition at
the bottom of the silo :

u(z=H)=0 (17)
The result is a displacement at the free surface :
u, = u(z = 0) = pgH*/(2 K) (18)

Our assumption of weak mobilisation is consistent if u; < A, or equiv-
alently H < H*, where H* is a critical column height, defined by

H =2 K A/(pg) (19)

Typical, with A = lmicron, we expect H* ~ 30 cm.

b) What should happen if our column is now higher than H*? Let
us assume now that friction is mobilised in most of the column. If
H > ), this implies that p ~ po.: thus, the deformation must be :

d.
g <. (20)
dz |

Let us investigate the bottom of the silo, putting z = H —n. At =0,
we have u = 0. Thus, using eq. (20), we reach :

U MNP 2nA
A A H*? (2
We see that the bottom part is not mobilised (u < A) up to a level :

H™
2

n=n"= (H* <)) (22)

Eq. (22) holds only if p(z) is close to ps in the region of interest :
this imposes * < A, or equivalently H* < A. In the opposite case,
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the pressure field p(z), in the interval 0 < n < n*, would again be
hydrostatic, with u ~ pgn*/ K .
This gives us :

n=H" (H™ > X) (23)

The Janssen model holds only if H > n*.

The conclusion (for all values of H*/\) is that Janssen can apply
only for heights H > H*. This is probably satisfied in industrial silos,
but not necessarily in laboratory columns. Certain observed disagree-
ments between p(z), measured in columns, and the Janssen model,
may reflect this [13].

The authors of ref. [13] have also made an important observation
: the temperature cycles between day and night lead to significant
modulations of p(z). This, as they point out, must be a dilation effect
: the differential dilations experienced by the grains and the wall can
easily lead to vertical displacements u which are comparable to the
anchoring length : mobilisation may be very different during night
and day.

2.6 Stress distribution in a heap

Below a heap of sand, the distribution of normal pressures on the floor
is not easy to guess. In some cases, the pressure is not a maximum at
the center point ! This has led to a vast number of physical conjectures,
describing "arches” in the structure [14] [15] [16]. In their most recent
form [16], what is assumed is that, in a heap, the principal axis of
the stress are fixed by the deposition procedure. Near the free surface,
following Coulomb [6], it is usually assumed that (for a material of
zero cohesion) the shear and normal components of the stress (7 and
0,) are related by the condition :

T = O, l4; = 0, tan Hmax (24)
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Fig. 2. The Coulomb method of wedges to define the angle Omax
at which an avalanche starts.
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where p; is an interval friction coefficient and tan 6., is the resulting
slope. In a 2 dimensional geometry, this corresponds to a principal
axes which is at an angle 20,,., from the horizontal (fig. 2) [6]. The
assumption of ref. [16] is that this orientation is retained in all the
left hand side of the heap (plus a mirror symmetry for the right hand
side). Once this is accepted, the equilibrium conditions incorporating
gravity, naturally lead to a ”channeling of forces” along the principal
axes, and to a distribution of loads on the bottom which has two peaks
This point of view has been challenged by S. Savage [17] who recently
gave a detailed review of the experimental and theoretical literature.
He makes the following points :

a) for 2 dimensional heaps ("wedges”) with a rigid support plane,
there is no dip in the experiments.

b) if the support is (very slightly) deformable, the stress field
changes deeply, and a dip occurs.

c) for the 3d case ("cones”) the results are extremely sensitive to
the details of the deposition procedure.

Savage also describes finite element calculations, where one im-
poses the Mohr Coulomb conditions (to which we come back in section
3) at the free surface of a wedge. If we had assumed a quasi elastic
description inside, we would have found an inconsistency : there is a
region, just below the surface, which becomes instable towards shear
and slippage. Thus Savage uses Mohr Coulomb in a finite sheet near
the surface, plus elastic laws in the inner part : with a rigid support
he finds no dip. But, with a deformable support, he gets a dip.

In my opinion, the Savage picture contains the essential ingre-
dients. There may exist an extra simplification, however —which I
already announced in connection with the silos. If we look at the for-
mation of the heap (as we shall do in section 3) we find that the
slope angle upon disposition should be lower than the critical angle
Omax- Thus our system is prepared in non critical conditions : all the
sample may then be described as quasi elastic. This, in fact, should
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not bring in very great differences from the Savage results.

I suspect that, what the physicists really wanted to incorporate,
is the possible importance of an internal texture [18]. If we look at
the contacts (1,2,---,7,--+,p) of a grain in the structure, we can form
two characteristic tensors: one is purely geometrical and defines what
[ shall call the texture :

Qus = Y 2Pz (25)

i

where T, are the distances measured fI‘OIl'l the center of ‘ra.vity of the
&
grain). T'he other tensor is the static stress :

1 i 1 n i
oap = 5 3 (e9F) + z5 FY) (26)

i

where p(i) is the force transmit tea at contact (z). There is no reason

for the axes of these two tensors to coincide. For instance, in an ideal
hexagonal crystal, one major axes of the () tensor is the hexagonal
axis, while the stresses can have any set of principal axes. In the heap
problem, I am ready to believe that the deposition process freezes a
certain structure for the @) tensor, but not for the stress tensor.

The presence of a non trivial @ tensor (or "texture”) can modify
the quasi elastic model : instead of using an isotropic medium, as
was done here in eqs (7, 8) for the silo, we may need an anisotropic
medium. In its simplest version, we would assume that the coarse-
grained average (), has two degenerate eigenvalues, and one third
eigenvalue, along a certain unit vector (the director) n(r). Thus, a
complete discussion of static problems, in the absence of strong shear
bands, would involve an extra field n defined by the construction of
the sample. But this refinement is, in a certain sense, minor. Texture
effects should not alter deeply the quasi elastic picture.
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3 Dynamics : avalanche problems

3.1 Onset and evolution of surface flows

3.1.1 The Coulomb view

As already mentioned in section 2, C.A. Coulomb (who was at the time
a military engineer) noticed that a granular system, with a slope angle
0, larger than a critical value f,,x, would be unstable. He related the
angle 0, to the friction properties of the material. For granular ma-
terials, with negligible adhesive forces. this leads to 1gf,.x = p;. where
i is a friction coeflicient [6]. The instability generates an avalanche.
What we need is a detailed scenario for the avalanche.

We note first that the Coulomb argument is not complete : a) it
does not tell us at what angle 0,,., + £ the process will actually start
b) it does not tell us which gliding plane is prefered among all these
of angle 0,,.«) as shown on fig.2.

I shall propose an answer to these questions based on the notion
of a characteristic size £ in the granular material.

1) Simulations [19] [20] and experiments [21] indicates that the
forces are not uniform in a granular medium, but that there are force
paths conveying a large fraction of the force. These paths have a certain
mesh size £, which is dependent on the grain shapes. on the friction
forces between them, etc, but which is typically £ ~ 5 to 10 gram
diameters d.

2) We also know that, under strong shear, a granular material can
display slip bands [22]. The detailed geometry of these bands depends
on the imposed boundary conditions. But the minimum thickness of a
slip band appears to be larger than d. We postulate that the minimum
size coincides with the mesh size €.

We are then able to make a plausible prediction for the onset of
the Coulomb process : the thickness of the excess layer must be of
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Fig. 3. The basic assumption of the BCRE picture is that there is
a sharp distinction between immobile grains with a profile h(z,1)
and rolling grains of density R(z,t).R is measured in units of
"equivalent height” : collision processes conserve the sum h + R.

16



order € ; and the excess angle = must be of order £/L. where L is the
size of the free surface.

Thus, at the moment of onset, our picture is that a layer of thick-
ness ~ & starts to slip. It shall then undergo various processes : (i)
the number of grains involved shall be fluidized by the collisions on
the underlying heap (ii) it shall be amplified because the rolling grains
destabilize some other grains below. The steady state flow has been
studied in detailed simulations [23]. It shows a sharp boundary be-
tween rolling grains and immobile grains : this observation is the
starting pomt of most current theories.

The amplification process was considered in some detail by Bou-
chaud et al. in a classic paper of 1994 (refered to here at BCRE
[24] [25]. It is important to realise that, if we start an avalanche with
a thickness € of rolling species, we rapidly reach much larger thick-
nesses K : in practice, with macroscopic samples, we deal with thick
avalanches (R > €). We are mainly interested in these regimes —
which, in fact, turn out to be relatively simple

3.1.2 Modified BCRE equations [26]

BCRE discuss surface flow on a slope of profile ii(«x.t) and slope tg =
0 = Oh/dx,with a certain amount R(xz,1) of rolling species (fig. 3). In
ref. [24], the rate equation for the profile is written in the form :

Oh e
i ~R(6, — 6) (+diffusionterms) (]
This gives erosion for # > 6,,. and accretion for 6 < 4,,.
We call 8,, the neutral angle. This notation differs from BCRE who
called it 0, (the angle of repose). Our point is that different experiments
can lead to different angles or repose. not always egal to 0,,.
For the rolling species, BCRE write :
OR  0Oh s JOR
a ot Ox

]
=T

(+diffusionterms) (28)
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Fig. 4. Feeding of a two dimensional silo with a flux ¢ over a
length L, leading to a growth velocity w(z) = @ /L.
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where « is a characteristic frequency, and v a flow velocity, assumed to
be non vanishing (and approximately constant) for  ~ 6,,. For simple
grain shapes (spheroidal) and average levels of inelastic collisions, we
expect v ~ yd ~ (gd)*/?, where d is the grain diameter and g the
gravitational acceleration. Eq. (28) gives 0h/0t as linear in R : this
should hold at small R, when the rolling grains act independently. But,
when R > d, this is not acceptable. Consider for instance the "uphill
waves” mentioned by BCRE, where R is constant : eq. (27) shows
that an accident in slope moves upward, with a velocity v,, = yR. It
is not natural to assume that v,, can become very large for large K.

This lead us (namely T. Boutreux, E. Raphaél, and myself) [26]
to propose a modified version of BCRE, valid for flows which involve
large R values, and of the form :

oh

o7 = wlfn—0) (B> (29)

where v, is a constant, comparable to v. We shall not see the conse-
quences of this modification.

Remark : in the present problems, the diffusion terms in eq. (28)
turn out to be small, when compared to the convective terms (of order
d/l, where L is the size of the sample) : we omit them systematically.

3.1.3 A simple case

A simple basic example (fig. 4) is a two dimensional silo, fed from a
point at the top, with a rate 2¢), and extending over a horizontal span
2L : the height profile moves upward with a constant velocity Q/L.
The profiles were already analysed within the BCRE equations (25).
With the modified version, the R profile stays the same, vanishing at
the wall (z =0) :

B B

T Lv (30)
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but the angle is modified and differs from the neutral angle : setting
Oh/Ot = Q/L, we arrive at :

Luup

Thus, we expect a slope which is now dependent on the rate of filling
: this might be tested in experiments or in simulations.

3.2 Downhill and uphill motions

Our starting point is a supercritical slope, extending over a horizontal
span L with an angle § = 0. + ¢ (fig. 2). Following the ideas of
section 1, the excess angle ¢ si taken to be small (of order £/L). It will
turn out that the exact values of ¢ is not important : as soon as the
avalanche starts, the population of rolling species grows rapidly and
becomes independent of ¢ (for € small) : this means that our scenarios
have a certain level of universality. The crucial feature is that grains
roll down, but profiles move uphill : we shall explain this in detail in
the next paragraph.

3.2.1 Wave equations and boundary conditions

It is convenient to introduce a reduced profile :

~

h(2,t)=h—0,2 (32)

Following BCRE, we constantly assume that the angles 8 are not very
large, and write tgf ~ @ : this simplifies the notation. Ultimately, we
may write eqs (28) and (29) in the following compact form :

OR on OR

E =’Uupa—$+va—x (33)
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ot " ox
Another important condition is that we must have R > 0. If we reach
R =0 in a certain interval of z, this means that the system is locally
frozen, and we must then impose :

(34)

dh -
—aT = U ('i"’])
One central feature of the modified eqs (33, 34) is that, whenever

R > 0, they are linear. The reduce profile E is decoupled from R, and
follows a very simple wave equation :

~

h (x,t) = v(x — vypt) (36)

where w is an arbitrary function describing uphill waves.

It is also possible to find a linear combination of R(x,t) and h (1)
which moves downhill. Let us put :

R(z,t) + A h (2,t) = u(z, 1) (37)

where ) is an unknown constant. Inserting eq. (37) into eq. (33), we
arrive at :

du  Ou ok
5 == [Vup — A(vup + v) B (38)
Thus, if we choose : _
N = Jup (39)

U+ Uyp

we find that u is ruled by a simple wave equation, and we may set :

u(z,t) = u(z + vt) (40)
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We can rewrite eq. (37) in the form :
R(z,t) = u(a 4 vt) — X w(a — vy,t) (41)

Eqs (36) and (41) represent the normal solution of our problem in all
regions where R > 0. This formal solution leads in fact to a great
variety of avalanche regimes.

3.2.2 Comparison of uphill and downhill velocities

Our equations introduce two velocities : one downhill (v) and one
uphill (v,,). How are they related ? The answer clearly depends on
the precise shape (and surface features) of the grains. Again, if we go
to spheroidal grains and average levels of inelasticity, we may try to
relate v,, and v by a naive scaling argument. Returning to eq. (27)
and (29) for the rate of exchange between fixed and rolling species, we
may interpolate between the two limits (R < £ and R > §) :

oh R
o = 1€ )f(é) (42)
where the unknown function f has the limiting behaviours :
fle>0) =2
f(>1)= fx = constant (43)

This corresponds to v,, = f.v€. Since we have assumed v ~ yd,we
are led to :

Vup/V ~ frok]d (44)

If, even more boldly, we assume that f., ~ 1, and since £ is somewhat
larger than the grain size, we are led to suspect that v,, may be larger
than v.
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3.2.3 Closed versus open systems

Various types of boundary conditions can be found for our problems
of avalanches :

a) At the top of the heap, we may have a situation of zero feeding
(R =0). But we can also have a constant injection rate () fixing R =
() /v. This occurs in the silo of fig. 4. It also occurs at the top of a dune
under a steady wind, where saltation takes place on the windward side
(2), imposing a certain injection rate (), which then induces a steady
state flow on the steeper, lceward side.

b) At the bottom end, we sometimes face a solid wall — e.g. in the
silo ; then we talk about a closed cell, and impose R = 0 at the wall.
But in certain experiments, with a rotating bucket, the bottom end is
open (fig.5). Here, the natural boundary condition is h = constant at
the bottom point, and R is not fixed. Both cases are discussed in ref.
[26]. Here, we shall simply describe some features for the closed cell
system.

3.3 Scenario for a closed cell

The successive "acts” in the play can be deduced from the wave equa-
tions (40, 41) plus initial conditions. Results are shown in figs (6-10).
During act 1, a rolling wave starts from the top, and an uphill wave
starts from the bottom end. In act 2, these waves have passed each
other. In act 3, one of the waves hits the border. If vy > v, this oc-
curs at the top. From this moment, a region near the top gets frozen,
and increases in size. If v, < v, this occurs at the bottom : the
frozen region starts there and expends upwards. In both cases, the
final slope 6 is not equal to the neutral angle 6,,, but is smaller :

9)" = 9?& -0 = 9:!1&.‘{ — 20.
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Fig. 5. Two types of avalanches :

24

SIS

a) open cell b) closed cell.



Fig. 6. Closed cell "act 1”. The slope in the bottom region is
described by eq. (40).
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Fig. 7. Closed cell "act 2”. The sketch has been drawn for v,, > v.
(When v,, < v,the slope R/dz in the central region becomes
positive).
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Fig. 8. Closed cell "act 3". The case v,, > v. A frozen patch
grows from the top.

[ SW]
|



A J

Fig. 9. Closed cell "act 3” (v,, < v). Here a frozen patch grows
from the bottom
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3.4 Discussion

1) The determination of the whole profiles h(z,t) on an avalanche
represents a rather complex experiment [27]. But certain simple checks
could easily be performed.

a) With an open cell, the loss of material measured by R(0,1) is
easily obtained, for instance, by capacitance measurement (28). The
predictions of ref. [26] for this loss are described on fig. (10). R(0,¢)
rises linearly up to a maximum at ¢t = L/v, and then decreases, reach-
ing 0 at the final time L(1/v + 1/vyy). The integrated amount is :

M= ] R(0,t)dt = %A&Lz (g + i) o (45)

Vo Uyp

Unfortunately, the attention in ref. [28] was focused mainly on the
reproducibility of M, but (apparently) the value of M and the shape
of R(0,t) were not analysed in detail.

b) With a closed cell, a simple observable is the rise of the height
at the bottom h(0,%) : this is predicted to increase linearly with time

h(0,) =h (0,) = Syt (46)

up to t = L/vg, and to remain constant after.

Similar measurements (both for open or closed cells) could be done
at the top point, giving h(L,1).

¢) A crucial parameter is the final angle ;. In our model, this
angle is the same all along the slope. For an open cell, it is equal to
the neutral angle ,,. For a closed cell, it is smaller : O; =0, —0.

Thus the notion of an angle of repose is not universal ! The result
f; = 0, — § was already predicted in a note (28], where we proposed
a qualitative discussion of thick avalanches. The dynamics (based on
a simplified version of BCRE eqs) was unrealistic — too fast — but
the conclusion on #; was obvious : in a closed cell, the material which
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starts at the top, has to be stored at the hottom part. and this leads
to a decrease in slope.

d) One major unknown of our discussion is the ratio v,,/v. We
already pointed out that this may differ for different types of grains.
Qualitative observations on a closed cell would be very useful here :
if in its late stages (act 3) the avalanche first freezes at the top, this
means vy, > v. If it freezes from the bottom, v,, must be < v.

2) Limitations of the present model :

a) Our description is deterministic : the avalanche starts auto-
matically at 6 = 0.y, and sweeps the whole surface. In the open cell
systems (with slowly rotating drums) one does find a nearly periodic
set of avalanche spikes, suggesting that 6,,., is well defined. But the
amplitude (and the duration) of these spikes varies [28] : it may be
that some avalanches do not start {from the top. We can only pretend
to represent the full avalanches.

What is the reason for these statistical features 7 (i) Disparity in
grain size tends to generate spatial in inhomogeneities after a certain
number of runs (in the simplest cases, the large grains roll further
down and accumulate near the walls). (ii) Cohesive forces may be
present : they tend to deform the final profiles, with a 6(x) which is
not constant in space. (iil) Parameters like 6, (or 6,,) may depend on
sample history.

b) Regions of small R. For instance, in a closed cell, R(z,t) = 0
for 2 — 0. A complete solution in the vicinity of R = 0 requires
more complex equations, interpolating between BCRE and our linear
set of equations, as sketched in eq. (42). Boutreux and Raphaél have
indeed investigated this point. It does not seem to alter significantly
the macroscopic results described here.

c) Ambiguities in 6,,. When comparing thick and thin avalanches,
we assumed that 6, is the same for both : but there may. in fact,
be a small difference betweer, the two. Since most practical situations
are related to thick avalanches, we tend to focus our attention on the
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"thick” case — but this possible distinction between thick and thin
should be kept in mind.
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