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abstract 

We present here some general features of granular materials, 
of their importance, and of the conceptual di伍cultieswhich they 
exhibit. For static problems, we insist on the difference between 
textures, which represent frozen correlations between grains, and 
stress tensors. We argue that in systems like heaps and silos, texture 
is present, but the main features of the stress distribution do not 

depend on it, and a description using an isotropic medium is a good 
starting point. We also discuss avalanche flows, using a modified 
version of the equations of Bouchaud et al, which might be valid 
for thick avalanches. 
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1 Examples of granular matter 

Solid particles are omnipresent : from the rings of Saturn to the snow 
of our mountains. Granular materials represent a major object of hu-
man activities : as measured in tons, the first material manipulated 

on earth is water ; the second is g削 1

This may show up in very di百erentforms : rice, corn, powders 

for construction ( the eli出erswhich will turn into concrete), pharma.-
ceuticals, ・・・． In our supposedly modern age, we are extraordinarily 

clumsy with granular materials. Changing the size, for instance, is diι 
自cult: crushing a granular system spends an unreasonable amount 
of energy, and also leads to an extremely wide distribution of sizes. 
Transporting a granular material is not easy : sometimes it自owslike 
an honest fluid, but sometimes (in hoppers) it may get stuck : the 
reopening procedures are complicated - and often dangerous. 

Even storage is a problem. The contents of bags can clump. Silos 

can explode, because of two features : 
a) Fine powders of organic materials in air often achieve the opti-

mum ratio of organic/ ambient oxygen for detonation 
b) Most grains, when transpo巾 d,acqu 

(tr唱iboelectricity) : high voltages build up, and create sparks. 
From a fundamental point of view, granular systems are also very 

special. The general de五nitionis based on size. We talk of particles 
which are large enough for thermal agitation to be negligible. Granular 
matter is a zero temperature system. In practice, Brownian motion 
may be ignored for particles larger thαn one micrometer : this is our 

threshold. 
A heap of grains is metαst'1,ble : ideally, on a flat horizontal support, 

it should spread into a monolayer (to decrease its gravitational er 宮y).
But it does not ! It can be in a var、ie.yof fr、ozenstaもes,and the detailed 

st閃 ssdistr、
come back to these static problems in section 2). The dynamics is 
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also very complex : my vision of a"alanches is presented in section 3 

- but it is probably naive and incomplete. 

Not only we do have a great variety of grains : but also a great 

variety of interactions, commanding the adhesion and the friction be-

tween grains. For instance、duringdry periods, the grains of sand in 

a dune have no cohesion, and under the action of wind, the dune 
moves [2]. In more hun 

minute humidity patches, and they ar守 notenもrainedby the 1、，in仁I: the 
dunes stop’thus relieving the plantations from a. serious threat. In the 

present text、weshall concentrate on dry systems, with no cohesion. 
which give us a relatively well de自nedmodel system. 

2 Statics 

2.1 The general problem 

Over more than a hundred yea.rs. the static distribution of stresses in 

a. granular sample has been d.na.lyzed in departments of . ..¥pplied ?vie-

cha.nics, Geotechnica1 Engineering. and Chemical Engineering. ＼へ・hat

is usually done is to determine the relations between stress and strain 

on model samples、usingthe so ca.lied tria.xia.l tests. Then. these data 

are integrated into the problem at hand守 withthe ma.terial divided 

into五niteelements. There is one complication however. To de五nea 

strain in a sample, we must know an 'Unstr，αined 1で六rεηastαte. This 
is easily found for a conventional solid. which has a. shape. It is less 

clear for a powder sample : a.）もhewaゲinwhich we filled the container 

for the tria.xia.l test may pla.y a role. b) when we transpose the tria.xia.l 
data to the抗eld,we a.re in fa.ct assuming that our日eldmaterial has 
had one particular mechanical history. 

I tend to believe that, in a. number of cases、theproblem of the 

reference state can be simpli五eel,because the sample has not experi-
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Fig. 1. A silo五lledwith grains, up to a height H. l'he grains 
are assumed to undergo very ::.mall vertical displacements u, for 

which an elastic description makes sense. They rub against the 

lateral walls. 
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enced any dangerous stress since the moment, when the grains "froze" 
together : this leads to a quasi elastic description, which is simple. 

I will try to make these statements more concrete by choosing one 
exempla : a silo filled with grain. 

2.2 The Janssen picture for a silo 

The problem of a silo (fig. 1) is relatively simple. The stresses, mea-
sured with gauges at the bottom, are generally much smaller than the 
hydrostatic pressure pgH which we would have in a liquid （ρ：density, 
g : gravitational acceleration, H : column height). A白rstmodelisa 
tion for this was given long ago by Janssen [3] and Lord Rayleigh 
[4]. 

a) Jan悶 nassumes that the horizontal stresses in the granular 

medium （σxx，σ仰） are proportional to the vertical stress田：

σxx＝σyy = kjσzz = -kjp(z) 、、l
J

噌
E
E

－－
，，I
E

、、

where kj is a phenomenological coe伍cient,and p = －σzz is a pressure. 
・b) An important item is the friction between the grains and the 

vertical walls. The walls endure a stress ση・Theequilibrium condition 
for a horizontal slice of grain ( area 1r R2, height dz) gives : 
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( where r is a radical coor‘dinate, and z is measured positive towards 
the bottom). 

Janssenαssumes that, everywhere on the walls, the friction force 
has reached its maximum allowed value -given by the celebrated law 
of L. da Vinci and Amontons [5]: 

σrz = －μ！σrr ＝一μfkjp (3) 
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where μ 1 is the coefficient of friction between grains and wall. 
Accepting eqs (1) and (3), and incorporating them into eq. (2), 

Janssen arrives at : 

~ ＋ 生LkiP ＝ρg 
θz R J 

This introduces a characteristic length : 

入＝___!i_ 
2μJkj 

and leads to pressure profiles of the form : 

p(z) = Poo [1 -exp(-z／入）］

(4) 

(5) 

(6) 

with Poo ＝ρg入 Nearthe free surface (z ＜入） the pressure is hydro-
static (p～ρgz). But at larger depths (z ＞入）p→p00:all the weight 
is carried by the walls. 

2.3 Critique of the Janssen picture 

This Janssen picture is simple, and does give the gross features of 
stress distributions in silos. But his two assumptions are open to some 

doubt. 
a) If we take an (excellent) book describing the problem as seen 

from mechanics department [6], we find that 吋叫ion( 1) is criticized 
: a constitutive relation of this sort might be acceptable if x, y, z were 

the principal axes of the stress tensor - but in fact, in the Janssen 

model, we also need non vanishing off diagonal componentsσxz，σyz・ 
b) For the contact with the wall, it is entirely arbitrary to assume 

full mobilisation of the friction, as in eq. [3]. In fact, any value σγz／σrr 
below threshold would be acceptable. Some tutorial examples of this 
condition and of its mechanical consequences are presented in Duran's 
book [1]. I discussed some related ambiguities in a recent note [7]. 

6 



2.4 Quasi elastic model 

When a. granular sample is prepared, we start from grains in mo-

tion, and they progressively freeze into some shape : this defines our 

reference state. For instance, if we抗日 a silo from the center, we have 

continuous avalanches running towards the wallsラ whichstop and leave 
us with a certain slope. 

As we shall see in section 3, this自nalslope, in a "closed cell" 

geometry like the silo, is always below c門：ticαl: we do not expect to 
be close to an instability in shear. In situations like this, we may try 

to describe the granular medium as a quαsi elastic medium. The word 

"quasi" must be explained at this point. 

When we have a. granular system in a certa.in state of compaction, 

it will show a. resistance to compression、measuredby a. maαoscopic 

bulk modulus J..,:. But the forces are mediated by small contact regions 

between two adjacent grains, and the contact areas increase with pres-

sure. The result is that I<(p) increases with p. For spheroidal objects 

and purely Hertzian contacts, one would expect I(～pl/3ち whilemost 

experiments are closed to k～p1/2 [9]. Tentative interpretations of 

_the p112 law have been proposed [10] [11]. 

Tln民 following[12], we assume now that we can use an elastic 
description of the material in the silo -since we do not expect any slip 

band in the silo. To start, we introduce a. displa.cement自eld児（乙） ; for 
instance, with a laboratory column, we would define a reference state 
with a五lledhorizontal column、thenrotate it to vertical, and measure 

some very small displacements tt of the grains towards the bottom. 

The only non vanishing component of ・u is Uz・

We further assume, for the moment, that our medium can be d令

scribed locally as isotropic, with two Lame coe伍cients,or equivalently 

a bulk modulus K, plus a. shear modulusμ. We can then write the ver・
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tical and horizontal constraints in the standard form : 

! 4u ¥ ou = ( [{ ＋二 lー」
¥ 3 ）θz 

(7) 

(Tノ 2μ＼θUz
σ 一庁 -' n 一一一目一一－

XX - vyy 一 v~ 3；δz 

Comparing the two, we do get a Janssen relation, with : 

k 2三一笠二2丘一 σ 一 一 一－3一σzz 3[{ + 4μ 1ーσ

(8) 

(9) 

where σis the Poisson ratio. 
In our picture, K and μ may still be functions of the scalar pres” 

sureー（σ口＋ σyy＋σzz), or equivalently of p( z). Here we assume, for 

simplicity, thatσis independent of p. This will have to be checked in 

the future. 
How do we get the stressesσrz? We have: 

σ付＝ 2μ年
oz 

(10) 

and this imposes : 

Uz = uo(z）一 ~C(z)r2 、l
ノ
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where u0 is the value at the center point, and the correction C is 
obtained by comparison with eq. {2) : 
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giving : 

C山 4μtl［ρg-*l 
The correction -1/2Cr2 in eq. (11) must be compared to uo・

(13) 
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Taking derivatives, we find : 

会（CR2) nl dp～R 
一 一円ーま（＇uo) -i<, p dz一入

(14) 

thus, the whole description is strictly consistent if入》 Ror μ1《 1.

2.5 State of partial mobilisation 

At this stage, we have ( to our best) answered the自rstcritique to 
the Janssen model. Let us now turn to the description of friction. 
Following ref. [7], we are led to replace the macroscopic threshold law 

of eq. [3] by a more detailed law, involving the displacement ・uz = u 
near the wall surface. The idea is that, for very small distortions, the 
friction force is harmonic - proportional to u. But when ・u is larger 

than a certain anchoring lengthム， thefriction force saturates to the 
Amontons limit. In ref. [7], I used a specific model of bistable asperities 
(Caroli Nozieres) to substantiate this assumption. B1凡 moregener乱l

friction systems (involving some plastic deformations at the contact 
points) are also compatible with this description. Thus, we are led to 
write : 

ーσrz= l7rrμ fψ（さ） (15) 

whereψ（ x) is a crossover function withψ（x）～z for z→0 and 

ψ（x）→l for lxl》 1.

The few data available on macroscopic friction systems with smooth 
surfaces suggestム～ 1micナon( comparable to the size of an asperity). 

For our grains, rubbing against the wall of a silo，ムislargely unknown. 
When lul ＜ム， wesay that the friction is only partly mobilised. 

a) Let us assume first that we haveηo mobilisatio凡 Thenp(z) is 
hydrostatic : p ＝ρgz, and we have a. local deformation : 

δuρgz 

δz I( 
(16) 
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where去＝ I{ +4μ/3. This is associated with a boundary condition at 

the bottom of the silo : 

u(z = H) = 0 (17) 

The result is a displacement at the free surface : 

Us三 u(z= 0) ＝ρgH2 /(2 K) (18) 

Our assumption of weみkmobilisation is consistent if Us ＜ム，orequiv-
alently H < HぺwhereH本 isa critical column height, defined by 

H*2 = 2 Kム／（ρg) (19) 

Typical, withム＝ !micron, we expect H’～ 30 cm. 
b) What should happen if our column is now higher than Hけ Let

us assume now that friction is mobilised in most of the column. If 
H＞入， thisimplies that p～p00: thus, the deformation must be : 

du Poo 
dz ～ 

(20) 
I< 

Let us investigate the bottoil'. of the silo, putting z = H －η. Atη＝ 0, 

we have u = 0. Thus, using eq. (20), we reach : 

u 

ム
一一

ηPoo 

ムK

2η入

H*z 
(21) 

We see that the bottom part is not mobilised ( u ＜ム） up to a level : 

H取2

η＝η 三 一一ー
2入

(H事＜入） (22) 

Eq. (22) holds only if p( z) is close to p00 in the region of interest : 
this imposes 'I]* ＜入， orequivalently H* ＜λIn the opposite case, 
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the pressure五eldp( z), in the interval O < 17 < 1(, would again be 
hydrostatic, with u～ρgη2；長

This gives us : 

ザ＝H* (H＊＞ 入） (23) 

The Janssen model holds only if H》ゲ．

The conclusion (for all values of H* ／入） is that Janssen can apply 
only for heights H》 H*.This is probably satisfied in industrial silos, 
but not necessarily in laboratory columns. Certain observed disagree-

ments between p(z), measur d in colun 
may reflect this [13 ]. 

The authors of ref. [13] have also made an impo山 ntobservation 

: the temperature cycles Letween day and night lead to significant 
modulations of p( z). This, as they point out, must be a dilation effect 

: the differential dilations experienr.ed by the grains and the wall can 
easily lead to vertical displacements u which are comparable to the 
anchoring length : mobilisation may be very different during night 
and day. 

2.6 Stress distribution in a heap 

Below a heap of sand, the distribution of normal pressures on the floor 

is not easy to guess. In some cases, the pressure is not a maximum at 
the center point ! This has led to a vast number of physical conjectures, 

describing "arches" in theぬ：ucture[14] [15] [16]. In their most recent 
form [16], what is ass叩
the stress are fixed by the deposition pr‘ocedure. Near the free surface, 
followi時 Coulomb[6], it is usually assumed that (for a material of 

zero cohesion) the shear and normal components of the stress ( T and 
σπ） are related by the condition : 

ア＝σnμi＝σn ta.n Bmax (24) 
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Fig. 2. The Coulomb method of wedges to define the angle Bmax 
at which an avalanche s~arts. 
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where μi is an interval friction coefficient and tan Bmax is the resulting 

slope. In a 2 dimensional geometry, this corresponds to a principal 

axes which is at an angle ヨBmaxfrom the horizontal (fig. 2) [6]. The 

assumption of ぱ .[16] is that this orientation is retained in all the 

left hand side of the heap (plus a mirror symmetry for the I、ighthan 

side). Once this is accepted, the equilibrium conditions incorporating 

gravity, naturally lead to a ,, channeling of forces" along the principal 

axes, and to a. distribution of loads on the bottom which has two peaks 

This point of view has been challenged by S. Savage [17] who 印 cently

gave a detailed review of the experimental and theoretical literature. 
He makes the following points : 

a) for 2 dimensional heaps （”wedges”） with a rigid support plane, 
there is no dip in the experiments. 

b) if the support is ( very slightly) deformable, the stress field 
changes deeply, and a dip occurs. 

c) for the 3d case （”cones") the results are extremely sensitive to 
the details of the deposition procedure. 

Savage also describes finite element calculations. where one im-

poses the Mohr Coulomb conditions ( to which we come back in section 

3) at the free surface of a wedge. If we had assumed a quasi elastic 
description inside, we would have found an inconsistency : there is a 

region, just below the surf弘C令、 whichbecomes instable towards shear 
and slippage. Thus Savage uses Mohr Coulomb in a finite sheet near 

the surface, plus elastic laws in the inner part : with a rigid support 

he finds no dip. But, with a deformable support, he gets a. clip. 

In my opinion, the Savage picture contains the essential ingre-

dients. There may exist an extra simplification, however -which I 

already announced in connection with the silos. If we look at the for-
mation of the heap ( as we shall do in section 3) we find tl凶 the

slope angle upon disposition should be lower than the critical angle 

Bmax・ Thus our system is prepared in non critical conditions : all the 

sample ma.y then be described as quasi elastic. This、infact, should 
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not bring in very great differences from the Savage results. 
I suspect that、whatthe physicists really wanted to incorporate, 

is the possible k叩 ortanceof an internal te仙川 ［18].If we look at 
the contacts ( 1, 2, ・ ・ ・ , i, ・ ・ , p) of a grain in theぬ・uctu民 wecan form 
two characteristic tensors: one is purely geometrical and defines what 

I shall call the texture : 

Q(Xβ＝ 乞x~) x~) (25) 

(where x" are the distances measured from the center of gravity of the 

grain The other tensor is the static stress : 

九β ＝ ~写（x~）弓川；）Fii)) (26) 

where p(i) is the force transmit teci at contact (i). There is no reason 

for the axes of these two tensors to coincide. For instance, in an ideal 
hexagonal crystal, one major axes of the Q tensor is the hexagonal 
axis, while the stresses can have any set of principal axes. In the heap 
problem, I am ready to believe that the deposition process freezes a 

certain structure for the Q tensor, but not for the stress tensor. 
The presence of a non trivial Q tensor ( or円texture")can modify 

the quasi elastic model : instead of using an isotropic medium, as 
was done here in eqs (7, 8) for the silo, we may need an anisotropic 
medium. In its simplest version, we would assume that the coarse』

grained average Q"13 has two degenerate eigenvalues, and one third 

eigenvalue, along a certain unit vector ( the director) '!!; （と）.Thus, a 
complete discussion of static problems, in the absence of strong shear 
bands, would involve an extra自eld'!!; de五nedby the construction of 
the sample. But this re五nementis, in a certain sense, minor. Texture 

effects should not alter deeply the quasi elastic picture. 
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3 Dynamics : avalanche problems 

3.1 Onset and evolution of surface flows 

3.1.1 The Coulomb view 

As already mentioned in section 2, C.A. Coulomb (who was at the time 

a military engineer) noticed that a granular system, with a slope angle 

(J, larger than a critical value ()max, would be unstable. He related the 

angle ()max to the friction properties of the material. For granular ma-

terials, with negligible adhesive forces、thisleads to tg(Jmax = μi, wherぞ

μi is a friction coe伍cient[6]. The instability gene川 esan avala吋 1e.

What we need is a detailed scenario for the avalanche. 

We note first that the Coulomb argument is not complete : a) it 

does not tell us at what angle ()max ＋εthe process will actually start 

b) it does not tell us which gliding plane is prefered among all these 

of angle ()max) as shown on五g.2.
I shall propose an answer to these questions based on the notion 

of a characteristic size ~ in the granular material. 

1) Siml山 tions[19] [20] a，吋 experiments[21] indicates that the 

forces are not uniform in a granular medium, but that there a.re force 

paths conveying a large fraction of the force. These pa.tbs have acerιain 

mesh size (, which is dependent on the gr a.in shapes. on the friction 

forces between them, etc, but which is typically f～5 to 10 gram 
diameters d. 

2) We also know that, under strong shear, a granular material can 

display slip bαnds [22]. The detaileci geometry of these bands depends 

on the imposed boundary conditions. But the minimum thickness of a 

slip band a.ppears to be larger tha.n d.日lepostula.te that the minimum 

size coincides with the mesh si::e r 
We are then able to make a plausible prediction for the onset of 

the Coulomb process : the thickness of the excess layer must be of 
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Fig. 3. The basic assumption of the BCRE picture is that there is 
a sharp distinction between immobile grains with a profile h(x, t) 
and rolling grains of density R(x, t).R is measured in units of 
”equivalent height”： collision processes conserve the sum h + R. 
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川 de1・e; a.nd the excess angleεmust be of order ( ／ム whereL is the 

size of the free surface. 

Thus, at the moment of onset, our picture is that a. layer of thick-

ness～f starts to slip. It shall then undergo various processes : (i) 

the number of grains involved shall be fluidized b）’ the collisions on 

the underlying heap (ii) it shall be a.mpli抗eelbecause the rolling grains 

destabilize some other grains below. The steady sta.もe自owhas beぞl1 

studied in detailed si打

twetうnrolling gr‘主1insand immobile grains : this observation is the 

startiIも pointof most current theories. 

The ampli自cationprocess was considered in some deta.il by Bou-

cha.ud et al. in a classic paper of 1994 (refere<l to here aι BCRE 

[24] [25]. It is impo山 ntto r~alise tl川、 ifwe start a.n a.va.lanche 山th

a thickness e of rolling species, we rapidly reach much larger thick-
nesses R : in practice, with macroscopic samples, we deal with thιck 
αυαlanches (R 》ご）.We are mainly interested in these regimes -

which, in fa.ct, turn out to be relatively simple 

3.1.2 Modified BCRE equations [26) 

BCRE discuss surface臼owon a. slope of pro自leh（‘I 

() ＝δhfδ2’with a. certain amou1 R(:r’t) of rolling species （抗g.:3). In 
ref. [24], the rate equation for the pro自leis written in the form : 

δh 
－＝ γR(Bn -fJ) ( +diffusionterms) (27) 
δt 

This gives erosion for。＞ On, and accretion for。＜{)n・

1へ／ecall Bn the neutral angle. This notation differs from BCRE who 

ca.lied it e,. ( the angle of repose). Om・pointis that different. experiments 

can lead to different angles or repose、nota.lwa.ys egal to On. 

For the rolling speci町、 BCREwrite: 

δR ah δR 
－＝ －－＋ ・，）一（+diffusio附 nns) (28) 
θ tδtθ2・



20 
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Fig. 4-Feeding of a two dimensional silo with a flux Q over a 

le時 thL, leading to a growth velocity w(z) = Q/ L. 
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whereγis a characteristic frequency, and v a. flow velocity, assumed to 
be non vanishing ( and approximately constant) for e～On. For simplぞ

grain shapes (spheroidal) and average levels of inelastic collisions, we 
expect v～γd～（gd) 1/2ヲ whered is the grain diameter and g the 

gravitational acceleration. Eq. (28) givesθhfδt as linear in R : this 
should hold at small R, when the rolling grains act independently. But, 
when R > d, this is not acceptable. Consider for instance the”uphill 
waves" mentioned by BCRE, where R is constant : eq. (27) shows 
that an accident in slope moves upward, with a velocity v,.,P ＝γR. It 
is not natural .to assume that v,.,P can become very large for large R. 

This lead us (namely T. Bou叫t悶
to propose a modi白edver、sionof BCREラ validfor flows which involve 

large R values, and of the form : 

ah 
ー＝V,.,p( (J叫 － 0) θt /I 

(R> 0 (29) 

whereυ叩 isa constant, comparable toυ. We shall not see the conse-
quences of this modification. 

Remark : in the present )roblems, the diffusion terms in eq. (28) 
turn out to be small, when compared to the convective terms ( of order 
d/l, where Lis the size of the sample) : we omit them systematically. 

3.1.3 A simple case 

A simple basic example （五g.4) is a two dimensional silo, fed from a 
point at the top, with a rate 2Q, and extending over a horizontal span 
2L : the height profile moves upward with a constant velocity Q / L. 
The profiles were already analysed within the BCRE equations (25). 
With the modi自edversion, the R pro五lestays the same, vanishing at 

the wall (x = O) : 

ハw
一u

z
一L一一R

 

(30) 
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but the angle is modified and d(fjers Jトomthe neutr，αlαngle : setting 
ah／θt = Q/ L, we anかeat : 

On -e ＝τg_ 
1./Vu.p 

(Q > V。 ( '.31) 

Thus, we expect a. slope which is now dependent on the rate of filling 
: this might be tested in experiments or in simulations. 

3.2 Downhill and uphill motions 

Our starting point is a. supercritical slope, extending over a horizontal 
span L with an angle e = &max ＋ε（fig. 2). Following the ideas of 
section 1, the excess angle t: si taken to be small ( of order UL). It will 
turn out that the exact values of t: is not important : as soon as the 
avalanche starts, the population of rolling species grows rapidly and 
becomes independent oft: (for t: small) : this means that our scenarios 

have a certain level of universality. The crucial feature is that grains 

roll down, but profiles move uphill : we shall explain this in detail in 
the next paragraph. 

3.2.1 Wave equations and boundary conditions 

It is convenient to introduce a reduced profile : 

h （ιt) = h -enx (32) 

Following BCRE, we constantly assume that the angles O are not very 

large, and write tgO～0 : this simplifies the notation. Ultimately, we 
may write eqs (28) and (29) in the following compact form : 

fJR fJ h δR 
一一一一－at -vup ax I Vax (33) 
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δhθh  
- -・・・ -ot - vup ox (34) 

Another important condition is that we must have R > 0. If we reach 
R = 0 in a certain interval of x, this means that the system is locally 

frozen, and we must then impose : 

nu 一一
～’
n
一t

o
－o
 

('.35) 

One central feature of the modi自edeqs (33, 34) is that, whenever 

R > 0, they are linear. The reduce profile h is decoupled from R, and 
follows a very simple wave equation : 

h (x,t) ＝υ（xー υ叩 t) (36) 

where w is an arbitrary function describing uphill waves. 

It is also possible to find a linear combination of R(x, t) and h (x, t) 
which moves downhill. Let us put : 

R(x, t) ＋入 h(x, t) = u(x, t) (37) 

where入isan unknown constar此 Inserti時 eq.(37) into eq. (33), we 
arrive at : 

δ uθuδh  
- -v一＝ [vup一入（υ叩＋υ）］－
δt δヰ・ p θX 

Thus, if we choose : 

(38) 

入＝~ (39) 
υ＋υ叩

we五ndthat u is ruled by a simple wave equation, and we may set : 

u(x, t) = u(x + vt) (40) 
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We can rewrite eq. (37) in the form : 

R(x, t) = u(:i: + vt）一入 w(:i:-Vupt) (41) 

Eqs (36) and ( 41) represent the normal solution of our problem in all 
regions where R > 0. This formal solution leads in fact to a. great 

variety of avalanche regimes. 

3.2.2 Comparison of uphill and downhill velocities 

Our equations introduce two velocities : one downhill （υ） and one 
uphill （υ叩）.How are they related ? The answer clearly depends on 
the p閃 ciseshape ( and surface features) of the grains. Again, if we go 
to spheroidal grains and average levels of inelasticity, we may try to 

relate Vu.p and υby a naive scaling argument. Returning to eq. (27) 
and (29) for the rate of exd削 1gebetween fixed and 刈 lingspecies, we 

may interpolate between the two limits (R < ( and R ＞ご）：

会＝出0一九）.f( f) 
where the unknown function f has the limiting behaviours : 

.f(x→0) = X l 

.f （》 1)= .f 00 = constant J 

(42) 

(43) 

This corresponds to Vup = .f ＝γιSince we have assumed u～γd,we 

are led to : 

Vup／υ～.f oo(/d ( 44) 

If, even more boldly, we assume that .f oo～1, and since ( is somewhat 
larger than the grain size, we are led to suspect that Vuv may be larger 
than v. 
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3.2.3 Closed versus open systems 

Various types of boundary conditions can be found for our problems 
of avalanches : 

a) At the top of the heap, we may have a situation of zero feeding 
(R =0). But we can also have a constant i町ectionrate Q自xingR = 
Q／’v. This occurs in the silo of白g.4. It also occurs at the top of a dune 
under a steady wind, where saltation takes place on the windward side 

(2), imposing a certain injection rate Q, which then induces a. steady 
state flow on the steeper, leeward side. 

b) At the bottom end, we sometimes face a solid wall - e.g. in the 
silo ; then we talk about a closed cell, and impose R = 0 at the wall. 
But in certain experiments, with a rotating bucket, the bottom end is 
open (fig.5). Here, the natu凶 boundarycondition is h. = constant at 
the bottom point, and R is not五xed.Both cases are discussed in ref. 
[26]. Here, we shall simply d白 C巾 esome features for the closed cell 
system. 

3 .3 Scenario for a closed cell 

The successive”acts" in the play can be deduced from the wave equa.-
tions (40, 41) plus initial conditio瓜 Resultsare shown in自gs(6-10). 
During a.ct 1, a rolling wave starts from the top, and an uphill wave 

starts from the bottom end. In act 2, these waves have passed each 
other. In act 3, one of the waves hits the border. Ifυ＋＞ υ，this oc-
curs at the top. From this moment, a. region near the top gets frozen, 
a.nd increases in size. If V+ ＜ υ、thisoccurs at the bottom : the 
frozen region starts there and expends upwards. In both c前町、 the

自na.lslope Of is not equal t0 the neutraJ angle en、butis smαller : 。1= Bn -o = Bmax - 2o. 
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Fig. 5. Two types of avalanches : a) open cell b) closed cell. 
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Fig. 6. Closed cell "act 1". The slope in the bottom region is 
described by eq. ( 40). 

25 



R 

h 

。

X 
d 

Fig. 1. Closed cell円act2 

X 

Xu L )I. 

(When υup < v,the slope oR／δx in the central region becomes 
positive). 
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Fig. 8. Closed cell "act 3". The case v叩＞ υ.A frozen patch 
grows from the top. 
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3.4 Discussion 

1) The determina.tion of the whole profiles h(x,t) on an avala吋 1e

repre悶
could easily be performed. 

a) Withαn open cell, the loss of ma.terial measured by R(O, t) is 
easily obtained, for insta.nce, by capacitance measurement (28). The 

predictions of ref. [26] for this loss a.re described on匂.(10). R(O, t) 
rises linearly up to a maxi口I 口1at t = L／υ，and then decreases, reach-

ing O at the五naltime L(l/v + 1/vup)-The integrated a.mount is : 

M 三 jR(O, t)d (45) 

Unfortunately, the attention in ref. [28] was focused mainly on the 
reproducibility of M, but (apparently) the value of M and the shape 
of R(O, t) were not analysed in detail. 

b) Withαclosed cell, a simple observable is the rise of the height 
at the bottom h(O, t) : this is predicted to incr‘ease linearly with time 

九（0,t) =h (0, t) = oυ＋i (46) 

up to t = L/v+, and to remain constant after. 
Similar measurements (both for open or closed cells) could be done 

at the top point, giving h(L, t). 
c) A crucial parameter is the五nalangle B1・Inour model, this 

angle is the same all along the slope. For an open cell, it is equal to 

the neutral angle Bn. For a closed cell, it is s1九alter: B 1 = Bn -o. 
Thus the notion of an angle of repose is not universal ! The result 

B 1 = Bn -o was already predicted in a note [28], where we proposed 
a-qualitative discussion of thick avalanches. The dynamics (based on 

a simplified version of BCRE eqs) was unrealistic - too fast - but 
the conclusion on BI was obvious : in a closed cell, the material which 
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starts at the top, has to be stored at the bottom part, and this lead詰

to a decrease in slope. 

d) One major unknown of our discussion is the ratio v叩／υ.We 
already pointed out that this may di百erfor different types of grains. 

Qualitative observations on a closed cell would be very useful here : 

if in its late stages ( act 3) the avalanche五rstfreezes at the top, this 

means v叩＞ v. If it freezes from the bottom，υ叩 mustbe ＜υ 
2) Limitations of the present model : 

a) Our description is deterministic : the avalanche starts auto-

matically at e = 8max, and sweeps the whole surface. In the open cell 

systems ( with slowly rotating drums) one does find a. nearly periodic 

set of avalanche spikes, sugg子stingthat Bmax is well de五ned.But the 
amplitude ( and the duration) of these spikes varies [28] : it may be 

that some avalanches do not start from the top. We can only pretend 
to represent the full avalanches. 

What is the reason for these statistical features ? (i) Disparity in 

grain size tends to generate spatial in inhomogeneities after a certain 

number of runs (in the simplest cases, the large grains roll further 

down and accumulate near the walls). (ii) Cohesive forces may be 

present : they tend to deform the final profiles, with a 8(:r) which is 

not constant in space. (iii) Parameters like em (or 811) may depend on 
sample history. 

b) Regions of smαll R. For ins tar e, in a closed cell, R( x, t）→O 

for X →0. A complete solution in the vicinity of R = 0 requires 

more complex equations, interpolating between BCRE and our linear 

set of e早川ions,as sketched in eq. (42). Boutreux and Raphおlhave 

indeed investigated this point. It does not seem to alter significantly 
the macroscopic results described here. 

c) A m.biguities川九.When comparing thick and thin avalanches, 
we assumed that en is the same for both : but there may、infact, 

be a. small difference betweer, the two. Since most practical situations 
a.re related to thick avalanches. we tend to focus our attention on the 
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”thick" case - but this possible distinction between thick and thin 

should be kept in mind. 
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