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Towards Classification of 5d SCFTs: Single
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Abstract: We propose a number of apparently equivalent criteria necessary for the

consistency of a 5d SCFT in its Coulomb phase and use these criteria to classify 5d

SCFTs arising from a gauge theory with simple gauge group. These criteria include

the convergence of the 5-sphere partition function; the positivity of particle masses and

monopole string tensions; and the positive definiteness of the metric in some region

in the Coulomb branch. We find that for large rank classical groups simple classes of

SCFTs emerge where the bounds on the matter content and the Chern-Simons level

grow linearly with rank. For classical groups of rank less than or equal to 8, our

classification leads to additional cases which do not fit in the large rank analysis. We

also classify the allowed matter content for all exceptional groups.
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1 Introduction

One of the main achievements of string theory has been a deeper understanding of

quantum field theories. We have learned, in particular, of the existence of non-trivial

superconformal field theories, not only in dimensions d ≤ 4 but also in d = 5, 6.

Studying the cases with d > 4 is interesting for a number of reasons: These theories

turn out to involve, not only interactions of massless particles, but also of tensionless

strings, which are quite novel. Higher dimensional SCFTs also seem to be simpler and

in particular classifiable—in particular, the (2, 0) SCFTs in d = 6 are believed to be

classified by ADE [1] and a classification for the d = 6, (1, 0) SCFTs has been proposed

[2–4]. Another motivation for studying cases with d > 4 is that higher dimensional

theories can lead to lower dimensional ones by compactifications and flowing to the

IR. This relationship between lower dimensional theories and their higher dimensional

‘parents’ also leads to the emergence of dualities in lower dimensional theories as a

manifestation of the different possible ways of assembling the intermediate manifold

from elementary pieces.

It is thus natural to ask if we can also classify the d = 5 SCFTs. String theory

suggests that this class of theories can be obtained geometrically as M-theory on non-

compact Calabi-Yau 3-folds (CY3) where some compact 4-cycles have shrunk to a

point. Unfortunately at present these singularities are not fully classified, although

some progress has been made in this regard [5]. Rather than attempting to classify

these theories in terms of singularities, we instead take a clue from the classification of

6d (1,0) theories, for which various geometric conditions were ultimately distilled into

constraints on gauge theoretic data. It was found that the allowed 6d (1,0) theories

can be viewed as generalized quiver theories. In that case, the classification was split

into two parts: first, a classification of the quiver node types (i.e. the single node

case), followed by a specification of the rules according to which the quiver nodes

can be connected. There are a few exceptional cases where the quiver nodes had no

gauge theory associated with them, which were nevertheless reachable by Higgs branch

deformations of some gauge theory. One may hope that a similar story can play out in

the case of 5d SCFTs. An example of this structure is the class of SU(2) gauge theories

coupled to matter studied in [6–10], where it was found that SU(2) gauge theories with

up to 7 fundamental hypermultiplets can arise in a SCFT and are related to del Pezzo

surfaces shrinking inside a CY3. The case of P2 is the only case which is not realizable

directly in terms of gauge theory (formally, this theory could be interpreted as ‘SU(2)

with -1 fundamental hypermultiplets’). But even this case can be obtained from gauge

theory by starting from SU(2) without matter and theta angle θ = π, and passing

through a strong coupling point where some massless modes emerge, are given mass,
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and integrated out [7, 11]. In a sense, this is similar to the exceptional cases in the 6d

(1,0) classification.

Motivated by this analogy, we thus take seriously the idea of using gauge theoretic

constructions as a window into the classification all 5d SCFTs. This approach was

pioneered by Intriligator, Morrison, and Seiberg (IMS) in [8]. The idea in that work is

that a weakly-coupled gauge system in its Coulomb phase can emerge in the IR as a

deformation of an SCFT, so a classification of allowed IR theories would translate to

a classification of UV fixed points, which correspond (in gauge theoretic terms) to the

regime where the gauge coupling is infinite and all Coulomb branch parameters are set

to zero. The assumption in [8] was that such an emergent IR gauge theory should be

physically sensible for all values of the Coulomb branch parameters. More precisely,

the condition that the vector multiplet scalars have a positive definite kinetic term on

the entire Coulomb branch was imposed. This condition is equivalent to requiring that

the matrix of effective couplings on the Coulomb branch is positive semi-definite. Using

this criterion, quiver gauge theories were ruled out and theories with a simple gauge

group coupled to matter were fully classified. However, it was found using geometric

constructions [10] as well as brane constructions in Type IIB [12] that not only are

quiver gauge theories allowed, but also that these quiver theories are sometimes dual

to gauge theories with a simple gauge group. The loophole in the positivity condition

of [8] ends up being the assumption that the gauge theoretic description should be valid

for the entire Coulomb branch, since it could nevertheless be possible that for some

values of the Coulomb branch parameters massless non-perturbative states emerge that

introduce boundaries where the effective description breaks down. In some cases, these

boundaries can be crossed at the expense of introducing a different description of the

physics. Indeed, by using brane constructions and instanton analysis, new examples of

gauge theories incompatible with the IMS criterion were found in [13–17], even in cases

involving simple gauge group.

We propose a modification of the IMS criterion that only imposes the condition

of positive definiteness of the metric to a subregion of Coulomb branch, rather than

the entire Coulomb branch. However, it turns out that there are additional conditions

that need to be checked: for example, 5d N = 1 gauge theories theories have monopole

strings, and the regions on the Coulomb branch where these strings become tensionless

should be regarded as parts of a boundary where the effective gauge theory description

breaks down. This is to say there may exist regions for which the metric is positive

definite but some string tensions are nevertheless negative, which indicates that those

regions are not physically sensible from the standpoint of a given effective description.

Therefore, the most natural criteria necessary for the consistency of allowed gauge

theories are positive semi-definiteness of the metric on some subregion of the Coulomb

– 3 –



branch, and furthermore positivity of masses and tensions of all physical degrees of

freedom in that region. Even though this seems to be the most natural set of criteria,

we find that there are three apparently simpler criteria, each of which we conjecture

is equivalent to the previous statement: 1) the metric is positive-definite somewhere

on the Coulomb branch, even if the string tensions are negative; 2) the tensions are

positive in some region irrespective of metric positivity, as it seems that positivity of

the metric in the same region automatically holds; and 3) the perturbative prepotential

is positive on the entire Coulomb branch. The motivation for this last criterion is

the convergence of the five-sphere partition function, which requires positivity of the

perturbative prepotential. However, the surprise is that to get an equivalent condition

to the other criteria, we need to check this positivity of the prepotential even in the

excluded regions where the naive tensions or metric eigenvalues may be negative. Why

all these criteria are equivalent to the existence of a region of Coulomb branch admitting

positive definite metric and positive mass (and tension) degrees of freedom is unclear,

but we have found no counterexamples to this assertion in the numerous examples we

have explored.

The organization of this paper is as follows. In Section 2, we review some relevant

facts concerning 5d N = 1 supersymmetric gauge theories. In particular, we explain in

detail our assertion that the IMS criterion is incomplete. In Section 3, we propose our

new (necessary) criteria for the existence of 5d SCFTs. We present our criteria in the

form of a series of conjectures we believe to be equivalent. In Section 4, we classify non-

trivial SCFTs with simple gauge group using our conjectures. We record the complete

classification in a collection of several tables indicating the gauge group, matter content,

classical Chern-Simons level (if applicable), and global symmetry groups. In Section 5,

we discuss the connection between 6d SCFTs compactified on a circle and a class of 5d

gauge theories we have identified. Finally, in Section 6, we conclude with a summary of

our results and prospects for future research associated to this project. We summarize

our conventions relevant to representation theoretic aspects of this paper in Appendix

A; in Appendix B, we explain our rationale for excluding certain matter representations

from our classification; and in Appendix C we discuss the five-sphere partition function

along with its precise relation to the perturbative prepotential.

2 Effective Prepotentials on the Coulomb branch

We begin by presenting salient features of supersymmetric gauge theories in five-

dimensions. The miminal SUSY algebra in 5d is the N = 1 algebra, which contains

eight real supersymmetries. A large class of 5d N = 1 gauge theories can be engineered
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by (p, q) five-brane webs in Type IIB string theory [12, 18, 19] and also by M-theory

compactified on Calabi-Yau threefolds [7–10].

A 5d gauge theory with a gauge group G has a Coulomb branch of moduli space

where the real scalar field φ in the vector multiplet Φ takes nonzero vacuum expec-

tation values in the Cartan subalgebra of the gauge group G. On a generic point of

the Coulomb branch, therefore, the gauge symmetry is broken to its maximal torus

U(1)rG where rG = rank(G), and therefore the Coulomb branch C is isomorphic to a

fundamental Weyl chamber, C ∼= RrG/W (G), where W (G) is the Weyl group of G.

The low-energy abelian theory is governed by a prepotential F(φi), which is a cubic

polynomial in φi. The perturbative quantum correction to the prepotential is exactly

determined by an explicit one-loop computation [20]. With matter hypermultiplets in

generic representations Rf , the exact prepotential of the low-energy abelian theory is

given by [6, 8]

F(φ) =
1

2g2
0

hijφiφ
j +

κ

6
dijkφiφ

jφk +
1

12

∑
e∈root

|e · φ|3 −
∑
f

∑
w∈Rf

|w · φ+mf |3
 ,(2.1)

where g0 is the classical gauge coupling, hij = Tr(TiTj), mf are the hypermultiplet

masses, κ is the classical Chern-Simons level, and dijk = 1
2
TrF(Ti{Tj, Tk}), where

F denotes the fundamental representation. Note that dijk is non-zero only for G =

SU(N ≥ 3). Gauge invariance requires the classical Chern-Simons level to be quan-

tized as κ+ 1
2

∑
f c

(3)
Rf
∈ Z where c

(3)
Rf

is the cubic Dynkin index of the representation Rf

defined by the relation TrRf
(Ti{Tj, Tk}) = 2c

(3)
Rf
dijk. The last two terms in parenthe-

ses are one-loop contributions coming from, respectively, the massive vector multiplets

and massive hypermultiplets on the Coulomb branch. Due to the absolute values in

the prepotential, the Coulomb branch is divided into distinct sub-chambers, and the

prepotential takes different expression in each sub-chamber.

The effective gauge coupling is given by a second derivative of the prepotential,

and the metric on the Coulomb branch is set by the effecitve gauge coupling:

(τeff)ij =
(
g−2

eff

)
ij

= ∂i∂jF , ds2 = (τeff)ij dφidφ
j . (2.2)

The BPS spectrum for 5d N = 1 theories includes gauge instantons, electric par-

ticles and magnetic monopole strings. The central charges of the electric particles and

monopole strings are, respectively

Ze =

rG∑
i=1

n(i)
e φi +m0I , Zm =

rG∑
i=1

n(i)
m φDi (2.3)
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where n
(i)
e , n

(i)
m ∈ Z, I is the instanton number, and the dual coordinates φDi are defined

by way of the prepotential:

φDi = ∂iF(φ). (2.4)

Bearing in mind that not every choice of integer coefficients n
(i)
e , n

(j)
m in (2.3) corre-

sponds to the central charge of a physical BPS state, we note that for any physical

choice of coefficients n
(i)
e , n

(j)
m the corresponding particle masses and monopole string

tensions should be positive. Geometrically, because the tension of a monopole string

is proportional to the volume of a 4-cycle, we can expect that there are at least as

many independent monopole strings as there are 4-cycles. The number of independent

monopole strings is therefore bounded below by rG. At low energies, we expect that

the number of independent strings is equal to the number of independent normalizable

Kähler classes, implying that there are precisely rG independent monopole tensions. We

note that it is always possible to choose a coordinate basis for which the independent

physical string tensions are

Ti(φ) ≡ ∂iF(φ) = φDi , i = 1, . . . , rG. (2.5)

In this paper, we will use the Dynkin basis (i.e. the basis of fundamental weights),

in which we expect the tensions of rG independent monopole strings are captured by

the above expression. The rationale for this choice is that a classical string tension

in the Dynkin basis is a root associated to gauge algebra and can thus be taken to

have positive projection on the Weyl chamber. (In the gauge theory description, these

correspond to monopole solutions.) We therefore expect that the quantum-corrected

string tensions are also positive in this basis.

It was argued in [8] that when the quantum part of the metric is non-negative on

entire Coulomb branch, a gauge theory can have non-trivial renormalization group fixed

point at UV. Otherwise, the kinetic term may become negative at some point on the

Coulomb branch, thereby preventing the existence of a UV fixed point. This necessary

condition for the existence of 5d interacting quantum field theories is equivalent to

the condition that F(φ) be convex on all of C and, viewed in this fashion, imposes

interesting constraints on the list of possible gauge theories. For example, quiver gauge

theories are ruled out, since for such theories there is always a region on C for which the

metric is negative. Thus, it was concluded in [8] that only gauge theories with simple

gauge groups can have non-trivial UV fixed points. The Coulomb branch metrics of

gauge theories with simple gauge groups were studied in relation to this condition and

a full classfication was given in [8]. All the theories in this classification are expected

to have interacting fixed points in either 5d or 6d.
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However, string dualities relate some theories predicted by the criterion in [8] to

theories (such as quiver gauge theories) excluded by the same criterion. For example,

an SU(3) gauge theory with κ = 0 and NF = 2 is dual to an SU(2) × SU(2) gauge

theory, as explained in [12]. The metric of the former theory is positive definite on the

entire Coulomb branch, while the latter theory has negative metric somewhere on the

Coulomb branch. We discuss the details of this example below.

In fact, the existence of many interesting 5d field theories beyond the IMS bounds

was argued by studying the dynamics of branes in string theory [13, 14, 17, 21, 22], CY3-

compactifications in M-theory [23–25], and also instanton analysis in 5d gauge theories

[15, 16, 26]. For example, the authors in [8] predict that an SU(N) gauge theory can

couple to NF fundamental hypermultiplets within the bound NF ≤ 2(N−|κ|). However,

recently, the existence of the interacting fixed points for SU(N) gauge theories with

NF ≤ 2(N − |κ|) + 4 was argued in various literature [13–16]. These theories are

obviously beyond the bound in [8]. See also [13–17, 21–26] for many other examples.

This tells us that the condition of the metric being positive semi-definite on the

entire Coulomb branch is too strong, and therefore we may be able to relax the resulting

constraints on the matter content and find a new classification which involves all known

consistent 5d field theories.

Indeed, we find that the previous constraint on the metric on the Coulomb branch

is too strong. This was already noticed for the simplest SU(2) × SU(2) quiver gauge

theory, for instance, in [12]. The SU(2)×SU(2) gauge theory has real two-dimensional

Coulomb branch of the moduli space. The scalar fields φ1, φ2 in the respective vector

multiplets of each gauge group parametrize the Coulomb branch of the moduli space.

In the chamber with φ1 > φ2 > 0, the quantum prepotential of this theory is given by

F(φ) =
1

2g2
1

φ2
1 +

1

2g2
2

φ2
2 +

1

6

(
8φ3

1 + 8φ3
2 − (φ1 + φ2)3 − (φ1 − φ2)3

)
, (2.6)

where g1, g2 are the respective gauge couplings for the two SU(2) gauge groups. Here

we have set the mass parameters of the bi-fundamental hypermultiplet to zero for

convenience.

Let us examine if the metric is negative somewhere in the Weyl chamber. The

matrix of effective couplings is

τeff(φ) =

(
1/g2

1 + 6φ1 −2φ2

−2φ2 1/g2
2 − 2φ1 + 8φ2

)
. (2.7)

One can easily check that one of the eigenvalues of the metric becomes negative near

φ2 ∼ 0.255φ1 when the inverse couplings are small, 1/g2
1,2 � 1. Naively, this quiver

theory cannot have an interacting fixed point according to the criterion of [8]. However,
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it turns out that this theory has a nice brane engineering in Type IIB string theory

[12] as well as a geometric construction via compactification of M-theory on a CY3 [10].

The five-brane web in Figure 1 will give rise to the 5d SU(2)× SU(2) gauge theory at

low-energy.                        gauge theory has two-dimensional Coulomb branch 
parametrized by            with                     .

As we decrease     , we meet massless instantons

Example
2/27

SU(2) ⇥ SU(2)

�1 > �2 > 0�1,�2

�2 ⇠ 0.25�1Det(⌧ij) = 0 at

�1

�2

�1�2

�2

�1�2

�2 ⇠ 0.25�1Det(⌧ij) = 0 at

�1

�2

massless instantons at �2 ⇠ 0.5�1

Det(⌧ij) > 0

2 2

Figure 1. Five-brane web for the SU(2)× SU(2) gauge theory.

It was pointed out in [12] that this theory has a singularity in the Coulomb branch

owing to the appearance of massless instanton particles and tensionless monopole

strings. Thus the SU(2)×SU(2) gauge theory description breaks down beyond the sin-

gularity. This singularity can be detected by computing the monopole string tensions

explicitly. The tensions of the monopole strings are given by

T1 = ∂1F = φ1/g
2
1 + 3φ2

1 − φ2
2 , T2 = ∂2F = φ2/g

2
2 − 2φ1φ2 + 4φ2

2 . (2.8)

In the brane configuration in Figure 1 monopole strings correspond to D3-branes wrap-

ping two compact faces. Their tensions are proportional to the areas of two faces. We

find that T1 and T2 are the same as the areas of the right and the left compact face

respectively. As φ2 decreases, the monopole string coming from the D3-brane wrap-

ping the left square of φ2 tends to be lighter and eventually becomes massless near

φ2 ∼ φ1/2 with 1/g2
1,2 � 1. It is clear that this point on the Coulomb branch where

we meet the new light degrees of freedom is far away from the region where we en-

counter the negative metric. The prepotential in (2.6) cannot describe the dynamics

of the system beyond the singularity due to the new light objects. The interior of the

physical Coulomb branch of the SU(2)× SU(2) gauge theory is therefore specified by

the bounds φ1 > φ2 > φ1/2. Notice, in particular, that this region is narrower than the

naive Coulomb branch φ1 > φ2 > 0. The SU(2) × SU(2) gauge theory is an effective

description of the system in Figure 1 only within the sub-region φ1 > φ2 > φ1/2.
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                       gauge theory has two-dimensional Coulomb branch 
parametrized by            with                     .

As we decrease     , we meet massless instantons

Example
2/27

SU(2) ⇥ SU(2)

�1 > �2 > 0�1,�2

�2 ⇠ 0.25�1Det(⌧ij) = 0 at

�1

�2

�1�2

�2

�1

�2

�2 ⇠ 0.25�1Det(⌧ij) = 0 at

�1

�2

massless instantons at �2 ⇠ 0.5�1

Det(⌧ij) > 0

2�12�2

Figure 2. Appearance of massless degrees of freedom in the SU(2)× SU(2) gauge theory.

If we want to study the precise physics around φ2 = φ1/2 we should use another

effective description which has the light particles in its perturbative spectrum. In this

Therefore, around                ,                        gauge theory is not a good 
effective description for the theory. We should use another effective theory 
to continue beyond                .

In this case,  we can use           gauge theory with            .

Note that the effective                       theory breaks down before we 
encounter metric singularity on Coulomb branch.

Example
2/27

[Aharony, Hanany 97]

�2 ⇠ 0.5�1 SU(2) ⇥ SU(2)

�2 ⇠ 0.5�1

SU(2) ⇥ SU(2)

SU(3) Nf = 2

SU(3) w/ Nf = 2

�2 ⇠ 0.5�1

SU(2) ⇥ SU(2)
Figure 3. Duality of SU(2)×SU(2) theory and SU(3) theory with two fundamental hyper-

multiplets, NF = 2.

case, the relevant description is the SU(3) gauge theory with NF = 2. The duality

between the SU(2)× SU(2) gauge theory and the SU(3) gauge theory was studied in

[12, 27]. Therefore, based on this duality, since the SU(3) gauge theory is a non-tivial

quantum theory with 5d CFT fixed point, which is predicted already in [8], we can also

expect that the SU(2) × SU(2) gauge theory is a non-trivial quantum theory. These

two gauge theories are good low-energy effective descriptions in different parameter

regimes of the same theory.

In this example, by exploiting the S-duality of Type IIB, we can clearly understand

what happens when some non-perturbative degrees of freedom becomes massless. While

the SU(2)×SU(2) gauge theory description breaks down near the point φ2 = φ1/2 due

to the emergence of light instanton particles, the perturbative description of the SU(3)

gauge theory is reliable at the point. The light instantons at φ2 = φ1/2 give rise to

non-abelian SU(2) gauge symmetry enhancement in the dual SU(3) gauge theory. It

follows that the Coulomb branch of the SU(3) gauge theory beyond the point φ2 = φ1/2

is merely a Weyl copy of the enhanced SU(2) gauge symmetry. This means that the
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correct prepotential on the chamber φ2 < 2φ1 after the transition is a copy of the

original prepotential on the Weyl chamber φ2 > 2φ1 obtained by exchanging φ1 ↔ φ2−
φ1. Therefore we expect a discontinuity of the prepotential in the SU(2)×SU(2) gauge

theory at the transition point φ2 = φ1/2 detectable by a non-perturbative quantum

correction to the prepotential despite the fact that the perturbative prepotential cannot

capture this. With the prepotential corrected by non-perturbative effects, the metric of

the SU(2)× SU(2) theory is always positive definite on the entire (physical) Coulomb

branch.

The lesson from this simple example is that in general, the physical Coulomb

branch may be smaller than the naive Coulomb branch identified in the perturbative

description. Stated differently, the actual physical Coulomb branch cannot necessarily

be identified with a fundamental Weyl chamber.

3 New Criteria

The above example shows that the IMS criterion is too restrictive. In view of the above

discussion, we will relax the condition that the metric be positive everywhere on the

perturbative Coulomb branch, since this condition imposes metric positivity even in

unphysical regions. Our reasoning is as follows: in some regions of the perturbative

Coulomb branch, there may exist boundaries where the non-perturbative degrees of

freedom become massless or tensionless. Beyond these boundaries, these masses and

tensions appear to become negative, which signals that the perturbative computation

can no longer be trusted. We therefore restrict our attention to the physical regions in

the Coulomb branch where all degrees of freedom have positive masses or tensions.

3.1 Main conjecture

We claim that if the metric is positive definite on the physical Coulomb branch the

gauge theory has non-trivial interacting fixed point. For these theories we can reach

their fixed points by taking the infinite coupling limit g2
0 →∞. It is therefore crucial to

determine the exact physical Coulomb branch that we will investigate. We claim that

the physical Coulomb branch is the subset Cphys ⊆ C bounded by the set of hyperplanes

where some non-perturbative degrees of freedom become massless and/or tensionless:

Cphys = {φ ∈ C |T (φ) > 0,m2
I(φ) > 0} . (3.1)

Here m2
I(φ) > 0, T (φ) > 0 indicates that the masses and tensions of all non-perturbative

degrees of freedom are positive at the point φ. Furthermore, the metric on the above

physical Coulomb branch must be positive-definite. Namely,

τeff(φ) > 0 , φ ∈ Cphys . (3.2)
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(a) (b)

(c)

Figure 4. We illustrate the three types of geometric transitions occurring in Calabi-Yau

threefolds using examples of (p, q) five brane webs. Transition (a) corresponds to a 4-cycle

shrinking to a 2-cycle, (b) corresponds to a 4-cycle shrinking to a point, and (c) is a flop

transition obtained by first shrinking a 2-cycle to a point and blowing up another 2-cycle.

This condition should be true for all physically-sensible 5d theories, including quiver

theories.

It is crucial to our classification that we are able to identify the hyperplanes where

massless degrees of freedom arise on the naive Coulomb branch. However, from a purely

field-theoretic standpoint, the task of identifying such hyperplanes is somewhat subtle

because it requires a non-perturbative analysis to identify exact instanton spectrum.

On the other hand, from a geometric perspective, it is in principle a straightforward

exercise to identify the hyperplanes bounding the physical Coulomb branch Cphys—from

a geometric point of view, these are regions where we encounter a geometric transition

in the CY3. Therefore, we embark on a short digression to explain how to characterize

these hyperplanes, and moreover their relation to the BPS spectrum.

We remark that there are three possible geometric transitions1 associated to parti-

cles or monopole strings becoming massless: (a) a 4-cycle shrinking to a 2-cycle, (b) a

4-cycle shrinking to a point, and (c) a 2-cycle shrinking to a point. Examples of these

three types of transitions in the case of (p, q) five brane webs are depicted in Figure

4. We now describe these three types of transitions in more detail, and explain their

relevance to our classification.

The first type of transition results in a local ADE singularity, as was argued in

1Note that 5d N = 1 gauge theories can be constructed in string theory by compactifying M-theory

on a CY3 in which M2-branes wrap compact 2-cycles and M5-branes wrap compact 4-cycles in the

CY3. This setup leads to a 5d description in which BPS particle masses are controlled by the volumes

of the 2-cycles, while monopole string tensions are controlled by the volumes of the 4-cycles.
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[28], so that there is always a gauge symmetry enhancement due to the appearance of

a collection of massless W-bosons arising from the shrinking 2-cycle. The low energy

dynamics in the vicinity of the singularity can therefore be captured precisely by a

gauge theory description involving a simply-laced gauge group. The region beyond this

wall should be regarded as an image generated by the Weyl group associated to the

enhanced nonabelian gauge group, and is therefore unphysical.

The second type of transition should be distinguished from the first in the sense

that a 4-cycle shrinking to a point always results in the appearance of an infinite num-

ber of massless particles associated to 2-cycles inside the shrinking 4-cycle. In this case,

the low energy dynamics is described by a CFT with tensionless monopole strings inter-

acting with massless electric particles [20]. The classic example of such a phenomenon

is the local P2 shrinking to a point. From a geometric point a view, continuing past

this kind of wall is prohibited and therefore corresponds to an unphysical region of the

moduli space.

The third type of transition corresponds to a 2-cycle shrinking to a point, while all

4-cycle volumes remain finite. This type of transition is typically described as a flop

transition in a geometric setting. When the volume of the 2-cycle corresponds to the

mass of some perturbative BPS particle, this transition can be captured by the one-

loop prepotential (2.1) and manifests itself as a discontinuity of the cubic coefficients.

However, when the volume of the 2-cycle corresponds to the mass of an instanton

particle, the one-loop prepotential may not be able to detect this sort of transition at

any point on the physical Coulomb branch. This sort of transition can in principle be

captured by a careful analysis of the non-perturbative physics, such as a computation

of the BPS partition function. Moreover, if a geometric description of the Calabi-Yau

geometry is known, one can detect the presence of such a transition by computing

the prepotential in terms of geometric data and carefully studying how the volumes

of various 2-cycles change in the moduli space. An example of this is the geometric

transition F1 → P2 [7, 11].

The relationship between the volumes of 2-cycles (4-cycles) and the central charges

Ze (Zm) described in (2.3) implies that some combination of central charges vanishes

for each transition type discussed above. Moreover, restrictions on the “allowed” linear

combinations of 2- and 4-cycle classes in the geometric setting translate into charge

quantization conditions in the field theory setting that ensure the corresponding BPS

states all lie within physical charge lattices. Such constraints, for example, imply that

the vanishing of irrational linear combinations of φi (i.e. combinations
∑
n

(i)
e φi where

n
(i)
e ∈ R\Q) cannot correspond to geometric transitions. We will thus need to be careful

to distinguish between physical and unphysical boundary hyperplanes in our analysis.
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In this paper, we conjecture that by turning off all of the mass parameters2, we

can identify Cphys by studying, in addition to flops by W-bosons, the first two types of

transitions described above—namely those for which a 4-cycle shrinks. We expect that

the one-loop prepotential can detect these types of transitions because the volumes of

the string tensions are captured by partial derivatives with respect to the scalars φi.

The above conjecture also implies that the third type of transition can arise only as a

pertubative flop transition by some massless electric particle when the mass parameters

are turned off. Therefore, we are led to the main statement of this paper, concerning

the characterization of what we refer to as the ‘physical’ Coulomb branch:

Main Conjecture

The physical Coulomb branch Cphys is defined by

Cphys = CT≥0, (3.3)

where

CT≥0 = {φ ∈ C |T (φ) ≥ 0} and ∂Cphys is rational. (3.4)

Moreover, non-trivial 5d gauge theories have positive definite metric on the physical

Coulomb branch:

τeff(φ) > 0 , φ ∈ Cphys. (3.5)

Note that τeff > 0 in the above equation indicates that τeff is a positive defi-

nite matrix, and rational means that the boundary ∂Cphys is specified by the setting

some rational linear combinations of the Coulomb branch parameters equal to zero, i.e.∑
i niφi = 0, ni ∈ Z. In other words, we require that the boundary ∂Cphys is identified

by the appearance of physical massless BPS particles, as discussed above. (Note that

we find only five exceptional theories where our classification becomes subtle due to

the rationality condition. These five exceptional theories will be discussed in Section

4.4.) For the remainder of the paper, we use Cphys to denote the subset of the Coulomb

branch defined in (3.3), while we use C to denote the (naive) Coulomb branch isomor-

phic to a fundamental Weyl chamber. We will also use CT>0 to denote the interior of

the physical Coulomb branch Cphys.

2Note that ‘mass parameters’ refers collectively to both hypermultiplet mass parameters mf and

inverse gauge couplings m0 = 1/g20 , which are treated on the same footing from the 5d perspective—

they are mass parameters for the global symmetries of the 5d theory.
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These new criteria can be used to classify all candidate non-trivial 5d QFTs with

simple gauge groups. We emphasize that our main conjecture is a necessary (though

perhaps not sufficient) set of criteria for the existence of a 5d interacting fixed point

in the UV. Although brane configurations and geometric constructions can provide

evidence confirming the existence of these theories, we will leave explicit realizations

of the theories in our classification to future research. For the reason, it is important

to bear in mind that our classification describes a maximal set of theories that can

possibly exist, and the set of theories that actually exist may be a subset. For the

remainder of this paper, we will be sloppy about the distinction between theories that

satisfy the necessary set of conditions described by our conjectures and theories that

have explicit realizations in string theory. In particular, we will refer to all candidates

as ‘non-trivial theories’.

We will classify these candidate non-trivial gauge theories below using our main

conjecture for lower rank cases rG ≤ 5. For higher rank theories, our main conjec-

ture appears to be rather inconvenient for the full classification of 5d QFTs. In the

next sub-section, we will make three additional conjectures, each of which we believe

is equivalent to the main conjecture described above, which make the problem of clas-

sification significantly more tractable. These additional conjectures impose constraints

(involving at most one derivative of the prepotential), which are easier to implement

in practice and thus enable us to make a full classification of arbitrary rank gauge the-

ories with simple gauge groups. To our knowledge, our classification covers all known

gauge theories with non-trivial fixed points and furthermore predicts large classes of

new non-trivial 5d gauge theories that may exist. However, we would like to emphasize

that only the main conjecture above is physically well-motivated at present. We do not

have physical or mathematical arguments for the three additional conjectures described

in the next sub-section.

Let us first demonstrate how to identify non-trivial QFTs and classify them us-

ing the Main Conjecture with simple examples. In this paper, we shall focus on the

N = 1 gauge theories without adjoint hypermultiplets.3 We will also turn off all mass

parameters except the gauge coupling.

We begin with SU(3) gauge theories. An SU(3) gauge theory has a two-dimensional

Coulomb branch parametrized by scalar fields φ1, φ2. We find that an SU(3) gauge the-

ory can have hypermultiplets only in the fundamental or the symmetric representation.

The dimensions of other SU(3) representations are so large that the prepotential be-

3Note that if we add a single adjoint hypermultiplet to a 5d theory with a simple gauge group, the

theory will be promoted to a N = 2 gauge theory. All such 5d N = 2 theories can be obtained from

6d N = (2, 0) SCFTs on a circle S1 with or without outer automorphism twists [29]. Gauge theories

with two or more adjoint hypermultiplets have negative prepotentials, so they are not renormalizable.
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comes negative at large gauge coupling when such hypermultiplets are included, and

hence those representations must be excluded.

For some purposes, we will find it convenient to use Dynkin basis for roots and

weights, while in some other cases it will prove more convenient to use the orthogonal

basis. In the Dynkin basis, W-boson masses are given by the inner products φ ·αi with

simple roots {αi} = {(2,−1), (−1, 2), (1, 1)}. In the Weyl subchamber C(1) = {φ1 >

φ2 > 0}, we find the prepotential of SU(3)κ +NFF +NSS is given by

FSU(3) =
1

g2
0

(φ2
1 − φ1φ2 + φ2

2) +
κ

2

(
φ2

1φ2 − φ1φ
2
2

)
+

1

6

(
8φ3

1 − 3φ1φ
2
2 − 3φ2

1φ2 + 8φ3
2

)
−NF − 9NS

12

(
2φ3

1 − 3φ2
1φ2 + 3φ1φ

2
2

)
. (3.6)

The prepotential in the second Weyl chamber C(2) = {φ2 > φ1 > 0} can be obtained by

interchanging φ1 and φ2. The physical Coulomb branch is restricted to the sub-domain

given by

C(1)
phys = {φ ∈ C(1) |T (φ) > 0} , C(2)

phys = {φ ∈ C(2) |T (φ) > 0} (3.7)

in the first and the second Weyl subchamber, respectively. The condition for the gauge

theory being a non-trivial theory is that the metric on C(1)
phys and C(2)

phys is positive in the

infinite coupling limit g2
0 →∞.

First consider the cases of κ = 0, NS = 0. Since κ is an integer, we require NF to

be even. The theories with NF ≤ 6 have a positive metric everywhere on the Coulomb

branch, as discussed in [8], thus they are all non-trivial 5d QFTs. Therefore, we focus

our attention on the cases with NF > 6. The eigenvalues of the metric and string

tensions are drawn in Figure 5 for NF = 6, 8, 10. Unlike the case NF = 6 for which

the metric always has positive eigenvalues, theories with NF = 8, 10 have a negative

eigenvalue of the metric in certain sub-region of their Coulomb branches. However,

one can easily check that their metrics are positive in the physical Coulomb branches

defined by T1, T2 > 0. In other words, we encounter a singularity at T2 = 0 in the

naive Coulomb branch and the effective gauge theory description breaks down before

we reach at the point where the metric becomes negative. Within the physical Coulomb

branch Cphys, the SU(3) gauge theories with NF = 8, 10 have positive definite metrics.

Thus we claim that they are good theories with non-trivial UV fixed points. They are

good effective descriptions for the corresponding non-trivial theories at the fixed points

in the parameter space Cphys. We check that if we have NF > 10, the theories have no

physical Coulomb branch, i.e. Cphys = ∅, and thus these theories cannot have interacting

fixed points. Indeed, it was conjectured in [14, 15] that the SU(3) gauge theories with
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(a) NF = 6
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(b) NF = 8
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0.3
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(c) NF = 10

Figure 5. Solid lines are eigenvalues M1/10 and M2/10 of the metric and dashed lines are two

string tensions T1 and T2 at g−2 = 0.1 for NF = 6, 8, 10. The horizontal axis is the ratio φ2/φ1.

The physical Coulomb branches are CNF=6
phys = φ1 ≥ φ2 ≥ φ1/2, CNF=8

phys = φ1 ≥ φ2 ≥ 0.7φ1,

and CNF=10
phys = φ1 ≥ φ2 ≥ 0.95φ1, respectively, with φ1 ≥ 0.

�1

�2��1

��2

m=0

1/g2

1/g2�2�1

T1

T2

Figure 6. 5-brane web diagram for the theory SU(3)−1 + 8NF at zero masses.

NF ≤ 10 have non-trivial UV fixed points while the theories with NF > 10 may be

inconsistent. Our computation provides concrete physical evidence for this conjecture.

Let us now turn on the Chern-Simons term at level κ. SU(3)−1 + 8F can be

engineered in string theory by a (p, q) 5-brane web [14]. Figure 6 is the 5-brane web

diagram for this theory at zero masses in the first Weyl chamber φ1 > φ2 > 0. The

two 5-branes at the top of the diagram end on 7-branes. Since the length of the first

D5-brane is given by 1/g2
0 − 2φ1, this brane picture is a good description for the theory

only within the parameter regime 1/g2
0 ≥ 2φ1. When 1/g2

0 < 2φ1, two 7-branes at the

top of the diagram need to be pulled inside the 5-brane loop.
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(a) C(1)
phys : φ1 > φ2 > φ1/2.
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(b) C(2)
phys : φ2 > φ1 > φ2/2.

Figure 7. Eigenvalues of the metric (solid line) and string tensions (dashed lines) of

SU(3)−1 + 8F fundamentals at 1/g2
0 = 0.1. The horizontal axes are ratios of scalar fields

φ2/φ1 and φ1/φ2 respectively.

At small coupling 1/g2
0 � φ1, the brane description is reliable. The monopole

strings correspond to D3-branes wrapping the compact faces and the tensions of these

strings T1, T2 are given by areas of two compact faces. It is straightforward to read off

the tensions from the diagram and the results are

T1 =
1

g2
0

(2φ1 − φ2) + 2φ2(φ1 − φ2) , T2 =

(
1

g2
0

+ 2φ2 − φ1

)
(2φ2 − φ1) . (3.8)

One can easily check that these string tensions agree with the tensions obtained from

the first derivatives of the prepotential FSU(3) in (3.6). Although the brane description

breaks down at large coupling beyond 1/g2
0 = 2φ1, the gauge theory description is still

good. Thus we can expect that the above tension formula for the monopole strings

may give the correct tensions of wrapped D3-branes even after 7-branes are moved

inside the 5-brane loop at large coupling. In Figure 6, the bottom face denoted by T2

shrinks to zero area when the last two internal D5-branes are placed on top of each

other, i.e. 2φ2 − φ1 = 0. Then the D3-brane wrapping the bottom face contributes

tensionless strings to the 5d gauge theory. The string tensions are non-negative on

the entire Coulomb branch in the first chamber φ1 > φ2 > φ1/2 even in the infinite

coupling limit g2
0 →∞. The non-negativity of the string tensions thus implies that the

SU(3) gauge theory and the 5-brane web are both good descriptions for this theory in

the first chamber. This is consistent with the fact that the SU(3) gauge theory has a

positive metric on the first chamber as depicted in Figure 7a. In the second chamber,

the metric becomes negative around φ1 < 0.74φ2. However, this is fine because the

physical Coulomb branch is restricted to φ2 > φ1 > 0.95φ2 due to the tensionless

strings. Therefore, as expected, SU(3)−1 + 8F is a non-trivial 5d QFT according to

our new criteria.

Another interesting example is SU(3)−4 + 6F. This is a new non-trivial 5d theory
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Figure 8. Det(τeff) (solid line) and string tensions (dashes lines) of SU(3)−4 +6F in the first

chamber.

we predict using our new criteria.4 This theory has the physical Coulomb branch only

in the first chamber and it becomes a one-dimensional real line Cphys
(1) : 2φ = φ2 ≥ 0 at

infinite coupling. In the second chamber, there is no physical domain in the Coulomb

branch. The metric on the physical Coulomb branch with T ≥ 0 is non-negative as

depicted in Figure 8.

Instanton operator analysis at 1-instanton level tells us that the global symmetry of

this theory will be enhanced to SO(12)×U(1) at the fixed point. Following [15, 30], one

can show that there is a conserved current multiplet in the antisymmetric representation

of the classical SU(6) flavor symmetry due to a 1-instanton operator which enhances

the global symmetry U(6) × U(1)I to SO(12) × U(1), where U(1)I is the instanton

symmetry. It is not clear, however, whether or not this theory has a 6d uplift in the

UV because the enhanced global symmetry is not of affine type.

3.2 Additional conjectures

In principle, we can classify all non-trivial 5d gauge theories for simple gauge groups of

arbitrary rank using the criterion in (3.5). For low rank, this is a manageable problem

and thus we classify all gauge theories with rG ≤ 3 using (3.5) in the next section.

However, our method of classification in this case involves an analysis on the entire

Coulomb branch, and thus becomes a difficult task for higher rank gauge theories.

To circumvent this issue, we propose the following three additional conjectures,

each of which we have checked leads to the same classification of 5d theories obtained

via our main conjecture, up to rG ≤ 3 analytically and up to rG ≤ 5 numerically:

More Conjectures

4This theory is a marginal theory whose fixed point theory is not a 5d SCFT. We discuss marginal

theories in more detail in Section 4.
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1. If τeff(φ) > 0 somewhere in the naive Coulomb branch C (possibly including

unphysical regions), then there exists a physical Coulomb branch Cphys.

2. If all T (φ) > 0 in some region CT>0 ⊆ C, then τeff(φ) > 0 in CT>0.

3. If the prepotential F(φ) > 0 everywhere in the the Coulomb branch C (pos-

sibly including unphysical regions), there exists a physical Coulomb branch

Cphys.

4. Conjectures 1-3 above are equivalent to our main conjecture.

Physical or mathematical proofs for the additional conjectures above are currently

lacking. However, the checks we did up to rG ≤ 5 are very compelling evidences for the

above conjectures. So we believe that they also hold for arbitrary higher-rank gauge

theories. We leave the proof of the equivalence of these conjectures to future study.

Each of the above three conjectures has its own interesting implications, which

we now discuss briefly. Conjecture 1 can be viewed as an extension of the criterion

previously discussed in [8]. There, the authors imposed that the constraint of metric

positivity everywhere on the Weyl chamber C, whereas Conjecture 1 merely requires

that there exist some regions in C for which the metric is positive definite. Stated

differently, we do not assume that the physical Coulomb branch Cphys = C.
Conjecture 2 is quite interesting because in all cases we have checked, the condition

that the tensions be positive on some region Cphys guarantees that the metric is also

positive definite on Cphys. Therefore, according to our main conjecture, the existence of

such a region Cphys is sufficient to imply the existence of a non-trivial fixed point. From a

practical standpoint, Conjecture 2 is much easier to utilize for a systematic classification

of 5d theories because the mathematical conditions we need to impose only involve the

gradient of the prepotential, whereas metric positivity requires diagonalization of the

Hessian of the prepotential. Moreover, the constraint of positive tension is convenient

because we only need to apply it to a local region of the naive Coulomb branch (as

opposed to the entire Coulomb branch) to identify a legitimate theory.

Conjecture 3 is essentially motivated by the convergence of the partition function on

a compact five-manifold. More precisely, Conjecture 3 asserts that positivity of F on the

entire Coulomb C branch guarantees the convergence of the naive perturbative partition

function. However, it is not clear if Conjecture 3 can guarantee the convergence of the

full partition function including non-perturabive contributions. We discuss the details

of the partition function on S5 and its connection to Conjecture 3 in Appendix C. One
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practical advantage of Conjecture 3 is that it only involves checking the prepotential

itself, rather than its first or second derivatives. However, this advantage comes at the

expense of having to analyze the prepotential on the entire Coulomb branch as opposed

to a local region.

We remark that Conjectures 2 and 3 are complementary: Conjecture 2 can be used

to argue the existence of non-trivial 5d gauge theories by locally identifying a physical

Coulomb branch Cphys, while Conjecture 3 can be used to exclude theories by again

locally identifying a region of C that does not admit a positive prepotential. Therefore,

a combination of these two conjectures gives us a powerful method to fully classify 5d

SQFTs with simple gauge groups. In the following section we will explicitly describe

the classification we obtained by using Conjectures 2 and 3.

4 Classification of 5d CFTs

4.1 Classification overview

Analysis on the Coulomb branch of the moduli space provides us a systematic way to

classify non-trivial 5d gauge theories with interacting fixed points. For the first step

toward this direction, we will classify all possible gauge theories with simple gauge

group G.

An important and very useful assumption in our classification is the idea that

the dimension of the largest matter representation must be less than the dimension of

the adjoint representation. The reason for this assumption is the fact that the mat-

ter hypermultiplets contribute terms that “reduce” the convexity of the perturbative

prepotential (2.1). In order to ensure the existence of a physical Coulomb branch for

which the prepotential is convex, it is therefore necessary that the vector multiplet

contributions to the prepotential “balance” against the hypermultiplet contributions.

Building on an observation made in [8], we translate this requirement into the restric-

tion that the lengths of the weights of a given representation be no larger than those

of the adjoint representation. If this were not the case, then even for a single matter

hypermultiplet it would be possible to locate a direction in the naive Coulomb branch

for which the prepotential is negative5 violating Conjecture 3.

5As described in Appendix A.3, the length l(e) of a root e is defined to be the sum of the coefficients

of e in a basis of simple roots, and similarly for a weight w. We note that it is always possible to locate

a region φ∗ ∈ C for which e · φ∗ = l(e) and w · φ∗ = l(w), and hence at infinite coupling 1/g20 = 0, the

prepotential is proportional to 6F(φ∗) =
∑

e∈roots |l(e)|3 −
∑

w∈Rf
|l(w)|3, and the classical CS term∑

w∈F(w · φ∗)3 =
∑

w∈F l(w)3 = 0. It is then evident that F(φ∗) will be negative if the quadratic

Dynkin index of Rf is larger than the quadratic Dynkin index of the adjoint representation—see

Appendix B for further discussion.
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In the following classification, we will distinguish between two types of theories—

standard and exceptional. Standard theories are classes of 5d gauge theories with clas-

sical gauge groups for which the same specifications for the matter content (depending

on the rank of the gauge group) applies for all rank rG. The expressions bounding the

matter content for standard theories are simple linear expressions involving rG and the

numbers of flavors. By contrast, exceptional theories exist only for some sporadic lower

rank cases, where rG ≤ 8. For these theories, there is no simple formula constraining

the matter content and therefore they must be studied on a case-by-case basis.

In the first sub-section, we will present the classification of all standard theories. We

will first choose some particular subregions in the Weyl chamber (where the choices of

subregions are motivated by data from lower rank studies) and examine these subregions

using Conjecture 3. This will set upper bounds on the matter content for non-trivial

QFTs. Note that this does not guarantee the existences of such theories, but merely

exclude the theories beyond the bounds. Then we will apply Conjecture 2 along the

same subregions to confirm the existence of the theories below these bounds. This will

allow us to finish the full classification of non-trivial CFTs with single gauge nodes of

higher ranks rG > 8.

In the second sub-section, we will deal with exceptional cases at lower ranks rG ≤ 8.

Our classification program involves both analytic and numerical search methods. By

‘analytic’, we mean that we have used a symbolic computing tool to derive precise in-

equalities describing the physical Coulomb branches with positive metric. By ‘numeri-

cal’, we mean that we have implemented a numerical search on the lattice discretization

of a fundamental Weyl chamber to locate a region admitting physical Coulomb branch.

Having determined such regions, we then analytically test whether or not such regions

admit non-trivial theories using Conjectures 2 and 3.

For rG ≤ 3, we employ only our main conjecture to analytically perform the clas-

sification, without using the additional conjectures. For 3 < rG ≤ 5, we employ a

numerical search combined with our main conjecture to identify suitable theories, and

then use Conjectures 2 and 3 to confirm the existence of these theories analytically.

For 5 < rG ≤ 8, we numerically perform the classification by using Conjectures 2 and

3.

Marginal theories vs. 5d CFTs One additional idea essential to our classification

is the notion of a marginal theory. Marginal theories are those theories for which there

exists a physical Coulomb branch Cphys with positive metric, but the strong coupling

limit 1/g2
0 → 0 is not a 5d SCFT fixed point. One distinguished characteristic of

marginal theories is the vanishing of the some of the eigenvalues of τeff at infinite

coupling limit, i.e. the metric is degenerate along Cphys. In addition, the physical

– 21 –



Coulomb branch with positive string tensions collapses to a lower dimensional space at

infinite coupling limit:

dim Cphys|g20→∞ < rG. (4.1)

In order to preserve the full dimensionality of Cphys, it is necessary to keep the gauge

coupling finite, i.e. g2
0 <∞. Finite gauge coupling introduces a scale to such theories,

implying that their UV completions cannot be 5d SCFTs. Some of these theories will

have 6d UV completions instead of 5d SCFT completions. We will discuss such theories

uplifted to 6d theories in Section 5. For other marginal theories, we do not have a clear

understanding of their UV completions, or if they even exist.

We use the term descendants to refer to theories that can be obtained from some

other theory with a larger number of matter hypermultiplets via RG flow after inte-

grating out some massive matter hypermultiplets. All the descendants of the marginal

theories flow to 5d SCFT fixed points at infinite coupling.

The reason for this, as explained in [8], is that the cubic deformations to the

prepotential (coming from the terms |w · φ + mf |3) resulting from sending a mass

parameter mf → ±∞ and integrating out the matter make the prepotential “more

convex”. The only other deformations to the prepotential arising from integrating

out NRf
massive matter hypermultiplets in the representation Rf with mass terms

sgn(mf )|mf | are terms of the form −sgn(mf )NRf
c

(3)
Rf
/2 contributing to the classical CS

level κ [8]. Therefore, for SU(N ≥ 3) theories, one can trade matter hypermultiplets for

the CS level κ, and such theories will have interacting fixed points as demonstrated by

our classification. On the other hand, if one increases κ or adds more matter to these

marginal theories described above, the resulting theories have no physical Coulomb

branch and consequently they are trivial.

Notational conventions In the following discussion, we adopt the condensed nota-

tion

Gκ +
∑
f

NRf
Rf (4.2)

to refer to a gauge theory with simple gauge group G with CS level κ coupled to NRf

matter hypermultiplets (or half-hypermultiplets) transforming in the representation

Rf . We encounter the following representations:

• F, fundamental

• Sym, rank two symmetric
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• AS, rank-2 antisymmetric

• TAS, rank-3 antisymmetric

• S, spinor

• C, conjugate spinor.

4.2 Standard theories

A class of gauge theories with gauge groups G = SU(N), Sp(N), SO(N) which exist

even at large rank can be fully classified by employing our conjectures. We call such

theories as standard theories as mentioned above. The results are summarized in Ta-

ble 1. The theories in these tables are marginal theories. We expect that all of the

standard have 6d uplifts at strong coupling, a point that we discuss further in Sec-

tion 5. The descendants of these marginal theories are expected to have non-trivial 5d

SCFT fixed points at UV. Cphys is the subregion in the Weyl chamber within which we

have confirmed the metric and the string tensions of the corresponding theory are both

positive.

F is the global symmetry at the UV fixed point which we obtain by using 1-

instanton analysis in [15, 16, 26, 30]6. Some lower rank theories have further symmetry

enhancements which are listed in Table 2. The full global symmetry could be in general

different from those listed in the table if the symmetry enhancement occurs at two

or higher instanton level. In some cases, the global symmetry group is affinized by

instanton operators. This may signal that the theory is uplifted to a 6d theory at

the UV fixed point. Some of these global symmetries have already been confirmed by

identifying brane constructions or explicit 6d uplifts of these theories [21, 22, 31].

In the following section we present an algorithm for the classification of the standard

theories listed in Table 1.

4.2.1 SU(N) gauge theories

Let us start with the classification of standard SU(N) gauge theories with NF funda-

mental, NSym symmetric, and NAS antisymmetric hypermultiplets. Note that other

representations are not allowed for higher rank theories rG > 8. For lower rank theories

6In some cases, like Sp(N) with fundamental matter, the 1-instanton analysis was supplemented by

additional data. Also there are several subtleties and technical difficulties involved in the 1-instanton

analysis, which in some cases prevent us from carrying the calculation. The cases of SU(N) groups

with symmetric matter hypermultiplets are particularly subtle. The symmetries written in these cases

are the minimal ones we are sure of, but there may well be additional enhancements by 1-instanton

states for low N cases.
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NSym NAS NF |κ| F Cphys

1 1 0 0 A
(1)
1 × U(1) S(2)

SU(N)

1 0 N−2 0 A
(1)
N−2 × U(1) S(2)

SU(N)

1 0 0 N
2

U(1)2 S(1)
SU(N)

0 2 8 0 Even N : E
(1)
7 ×A(1)

1 ×A(1)
1 ×SU(2) S(2)

SU(N)

Odd N : D
(1)
8 × A(1)

1 × SU(2)

0 2 7 3
2

Even N : D
(1)
8 × SU(2) S(3)

SU(N)

Odd N : E
(1)
7 × SU(2)× SU(2)

0 1 N+6 0 A
(1)
N+6 × U(1) S(2)

SU(N)

0 1 8 N
2

SO(16)× U(1)2 S(1)
SU(N)

0 0 2N+4 0 D
(1)
2N+4 S(2)

SU(N)

(a) Marginal SU(N) theories with CS level κ, NSym symmetric, NAS antisymmetric, and NF

fundamental hypermultiplets. See (4.4) for an explicit description of the physical Coulomb

branches described in the far right column.

NAS NF F Cphys

1 8 E
(1)
8 × SU(2) SSp(N)

0 2N + 6 D
(1)
2N+6 SSp(N)

(b) Marginal Sp(N) theories with NAS

antisymmetric and NF fundamental hy-

permultiplets. See (4.19) for a description

of the physical Coulomb branches.

NF F Cphys

N − 2 A
(2)
2N−5 SSO(N)

(c) Marginal SO(N>4) theories with NF

fundamental hypermultiplets. See (4.26)

for a description of the physical Coulomb

branch.

Table 1. Classes of standard gauge theories. Note that all of these theories are marginal and

their descendants have 5d conformal fixed points in the UV. See (4.4), (4.19)

rG ≤ 8, we can also add NTAS matters in the rank-3 antisymmetric representation.

But theories with NTAS > 0 are exceptional theories that we will discuss separately

below. Matter hypermultiplets in other representations are not allowed.

In the following discussion, we express the roots and weights in the orthogonal

basis. The prepotential for SU(N)κ +NFF +NASAS in the Weyl chamber a1 ≥ a2 ≥
· · · ≥ aN−1 ≥ 0 is given by

FSU(N) =
1

2g2
0

N∑
i=1

a2
i+
κ

6

N∑
i=1

a3
i+

1

6

N∑
i<j

(ai−aj)3−NF

12

N∑
i=1

|ai|3−
NAS

6

N∑
i<j

|ai+aj|3 , (4.3)

with aN = −∑i ai. A symmetric matter hypermultiplet has the same contribution
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N NAS NF |κ| F

4 2 8 0 E
(1)
7 ×B(1)

3

5 2 7 3
2

E
(1)
7 ×G2

4 2 7 3
2

B
(1)
9

5 1 11 0 A
(1)
11 × A(1)

1

4 1 10 0 A
(1)
11

6 1 8 3 SO(16)× SU(2)× U(1)

5 1 8 5
2

E
(1)
8 × U(1)

4 1 8 2 E
(1)
8 × U(1)

Table 2. SU(N) theories with further symmetry enhancement.

to the prepotential as the contribution from (NAS = 1, NF = 8) hypermultiplets. It

follows that (NAS = 1, NF = 8) hypermultiplets can be traded with NSym = 1 at the

level of the prepotential. So we will consider the cases NSym = 0 and retrive the cases

with NSym > 0 by using the “equivalence” (NAS = 1, NF = 8) ∼ NSym = 1 as needed.

We will examine the following three regions of the Weyl chamber,

S(1)
SU(N) = (a, a, · · · , a,−(N−1)a) , S(2)

SU(N) = (a, 0, · · · , 0,−a) , S(3)
SU(N) = (a, a, 0, · · · , 0,−2a) ,

(4.4)

Firstly, Conjecture 3 imposes the condition for non-trivial SU(N) theories that the

prepotential should be positive FSU(N) > 0 along these three regions. Then each of

three regions gives rise to the following three inequalities,

S(1)
SU(N) : NF(N2 − 2N + 2) + 2|κ|N(N − 2) +NAS(N − 2)(N2 − 4N + 8) ≤ 2N3 ,

S(2)
SU(N) : NF + (N − 2)NAS ≤ 2N + 4 ,

S(3)
SU(N) : 5NF + 5NAS(N − 2) + 6|κ| ≤ 10N + 24 . (4.5)

For a given N , these inequalities set some upper bounds on the matter content of

the theories with non-trivial fixed points. We may be able to find other independent

inequalities by examining other regions in the Weyl chamber. But we will show shortly

that these inequalities are enough for higher rank theories. By analyzing these three

inequalities, it can be shown that for N > 6 there are only five cases that saturate one

of these inequalities while not violating the others:

(NAS, NF, |κ|) = (2, 8, 0) , (2, 7, 3
2
) , (1, N + 6, 0) , (1, 8, N

2
) , (0, 2N + 4, 0) . (4.6)

Other theories with N > 6 having more matter or higher Chern-Simons levels are all

excluded by Conjecture 3 since they have negative prepotential along one of the above

three regions.
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We will now confirm that the upper boundary theories in (4.6) are indeed non-

tivial theories having interacting UV fixed points by testing Conjecture 2 along the

three subregions S(i=1,2,3)
SU(N) . First, we expand the Coulomb branch parameters around

S(1)
SU(N) as

ai = a+ δi , δi � 1 , (4.7)

with δi > δi+1. Then the string tensions can be approximated as

Ti = (∂ai − ∂ai+1
)FSU(N)

=

(
1

g2
0

+

(
N + κ− NF

2
− 3

2
NNAS + 4NAS

)
a

)
(δi − δi+1) +O(δ2) , (4.8)

TN−1 = ∂aN−1
FSU(N)

=
N

g2
0

a+

(
N3−κN(N−2)−NF

2
(N2−2N+2)−NAS

4
(N3−6N2+16N−16)

)
a2

2
+O(δ) .

It is obvious that all the string tensions are positive at weak coupling 1/g2
0 � 1 since

δi > δi+1. However, in the strong coupling limit 1/g2
0 → 0, all of the string tensions

are positive, i.e. T > 0, only if the matter content of the theory satisfies the following

inequalities:

2N + 2κ−NF −NAS(3N − 8) ≥ 0,

N3−κN(N−2)−NF

2
(N2−2N+2)−NAS

4
(N3−6N2+16N−16) ≥ 0 . (4.9)

When all the string tensions are positive, we identify the corresponding theory as a

good theory with an interacting UV fixed point by using Conjecture 2.

Similarly, it is straightforward to show that the string tension analysis around

S(2)
SU(N) leads to the inequalities

2N + 4−NF −NAS(N − 2) ≥ 0 , NAS ≤ 2 . (4.10)

Lastly, the string tensions near S(3)
SU(N) are approximated as

T1 =

(
1

g2
0

+

(
N + k − 1

2
NF −

1

2
NAS(N − 2)

)
a

)
(δ1 − δ2) +O(δ2) ,

T2 =
a

g2
0

+

(
N + 4 + k − 1

2
NF −

1

2
NAS(N + 2)

)
a2/2 +O(δ) ,

Ti =

(
1

g2
0

+ (4− 2NAS)a

)
(δi − δi+1) +O(δ) ,

TN−1 =
2a

g2
0

+ 2

(
N + 2− k − 1

2
NF −

1

2
NAS(N − 3)

)
a2 +O(δ) , (4.11)
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where a1 = a + δ1, a2 = a + δ2 and ai = δi for 3 ≤ i ≤ N − 1 with infinitesimal

parameters δi. Therefore the analysis T > 0 around S
(3)
SU(N) gives the inequalities

NAS ≤ 2 , 2N+2k−NF−NAS(N−2) ≥ 0 , 2N+4−2κ−NF−NAS(N−3) ≥ 0 . (4.12)

We now have three sets of inequalities (4.9), (4.10), (4.10). Conjecture 2 tells us that

if an SU(N) theory on one of the three subregions S(i=1,2,3)
SU(N) satisfies the corresponding

inequality, the theory is a non-trivial theory having interacting fixed point at UV. With

this criterion, one can easily show that all of the upper boundary theories in (4.6) are

non-trivial theories. We will call these theories, and their descendants obtained by

integrating out massive matter, standard SU(N) gauge theories. The standard SU(N)

theories are summarized in Table 1a. Note that we obtained results for the theories

with symmetric hypermultiplets by trading (NAS, NF) = (1, 8) → NSym = 1. The

theories (and their descendants) in Table 1a exist at any N and they are the only

non-trivial theories at N ≥ 9, which is proven above relying on Conjecture 2 and 3.

This completes the full classification of standard SU(N) gauge theories. In fact, all the

theories listed in Table 1a lift to 6d SCFTs in the UV, and hence they are marginal

theories. We discuss these theories and their 6d uplifts in more detail in Section 5.

4.2.2 Sp(N) gauge theories

Let us turn to Sp(N) gauge theories. Sp(N) gauge theory can have NF fundamental,

NAS antisymmetric, and NTAS rank-3 antisymmetric representations of Sp(N). We

claim that no other representations are permitted, and furthermore NTAS > 0 only

for theories with N ≤ 4. The theories with NTAS > 0 are exceptional theories, and

will be discussed separately below. In this section, we consider the standard theories

Sp(N) +NFF +NASAS. The Sp(N) theory has a single Weyl subchamber a1 ≥ a2 ≥
· · · ≥ aN ≥ 0. The prepotential is given by

FSp(N) =
1

2g2
0

N∑
i=1

a2
i +

1

6

(
N∑
i<j

(
(ai − aj)3 + (ai + aj)

3
)

(1−NAS) + (8−NF)
N∑
i=1

a3
i

)
.

(4.13)

Since the Sp(N) theory has a single Weyl chamber, in sharp contrast to the SU(N) cases

with many distinct chambers, we can in fact examine every point on the Weyl chamber

without restricting to particular subregions and thereby obtain a full classification using

only Conjecture 2.
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The string tensions are

Ti = (∂ai − ∂ai+1
)FSp(N)

= (ai−ai+1)

(
1

g2
0

+
i∑

j=1

(2aj − ai − ai+1)(1−NAS) +
1

2
((2N − 4)(1−NAS) + 8−NF) (ai + ai+1)

)

TN = ∂aNFSp(N) = aN

(
1

g2
0

+
8−NF

2
aN + 2(1−NAS)aT

)
, (4.14)

where aT =
∑N−1

i=1 ai. The condition on the last string tension TN > 0 gives the

inequality

NAS ≤
8−NF

4

aN
aT

+ 1 . (4.15)

The right hand side of this equation is maximized near a1 = a2 = · · · = aN and the

result is

NAS ≤
4N −NF + 4

4(N − 1)
. (4.16)

For the theories with N ≥ 5, this condition allows only the cases with NAS = 0, 1.

When NAS = 1, the tension positivity conditions reduce to the single condition

NF ≤ 8 (when NAS = 1) . (4.17)

When NAS = 0, the string tensions can be written as

Ti = (ai − ai+1)

(
1

g2
0

+ 2
i−1∑
j=1

aj +
2N + 8−NF − 2i

2
a2
i +

2N + 4−NF − 2i

2
a2
i+1

)

TN = aN

(
1

g2
0

+
8−NF

2
aN + 2aT

)
. (4.18)

The positive tension conditions T > 0 admit the maximum number of matter hyper-

multiplets near the subregion

SSp(N) = (a, 0, · · · , 0). (4.19)

Around SSp(N), the only non-trivial condition is T1 > 0 which gives rise to the bound

NF ≤ 2N + 6 . (4.20)

The standard Sp(N) theories are those summarized in Table 1b along with their de-

scendants. The theories in Table 1b have 6d uplifts at the UV fixed point, so they are

marginal theories. Their descendants are expected to have 5d CFT fixed points in UV.
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Note that, when NF = 0, the Sp(N) gauge theory has a discrete theta angle θ = 0, π

associated to π(Sp(N)) ∼= Z2. Thus there are two more non-trivial Sp(N) theories with

(NAS = 0, NF = 0) and (NAS = 1, NF = 0).

One can immediately show that, for these standard theories, the prepotential (4.13)

is always positive within the Weyl chamber. If we add more matter to these theories,

their prepotential will become negative somewhere in the Weyl chamber. This confirms

Conjecture 3 for the standard Sp(N) gauge theories.

4.2.3 SO(N) gauge theories

We consider the case of SO(N) with NF fundamental flavors. Spinor hypermultiplets

can also be added when N ≤ 14, but because such theories are not standard, we

discuss them in the next subsection. In the case N = 2r + 1, there is only a single

Weyl subchamber to consider, namely a1 ≥ a2 ≥ · · · ≥ ar ≥ 0. The prepotential for

SO(2r + 1) +NFF is

FSO(2r+1) =
1

g2
0

r∑
i=1

a2
i +

1

6

r∑
i<j

[(ai + aj)
3 + (ai − aj)3] +

1−NF

6

r∑
i=1

a3
i . (4.21)

Using the above formula for the prepotential, we see that the tensions are given by:

Ti<r =
(
∂ai − ∂ai+1

)
FSO(2r+1)

=
2

g2
0

(ai − ai+1) + 2(ai − ai+1)
i−1∑
j=1

aj

+ a2
i+1

(
1− 1

2
(N −NF − 2i− 2)

)
+
(ai

2
(N −NF − 2i)− 2ai+1

) (4.22)

Tr = 2∂arFSO(2r+1) =
2

g2
0

ar + 4ar

r−1∑
j=1

aj + (1−NF)a2
r. (4.23)

Let us first focus on the expression for T1:

T1 =
2

g2
0

(a1 − a2) +
1

2
(a1 − a2)((N −NF − 2)a1 + (N −NF − 6)a2). (4.24)

It is possible to maximize the number of fundamental matters while keeping T1 positive

by setting a2 = 0 in the infinite coupling regime 1/g2
0 � 1:

NF ≤ N − 2. (4.25)

Notice that when a2 = 0, the remaining Coulomb branch parameters aj = 0 for j > 2

according to the definition of the fundamental Weyl chamber. Therefore, we see that

– 29 –



we can maximize NF while keeping all tensions positive along the locus

SSO(2n+1) = (a, 0, . . . , 0). (4.26)

For NF = N − 2, the only way to maintain positive tension is to keep the gauge

coupling finite, g2
0 <∞. The resulting theory is a marginal theory with a 6d uplift at

the UV fixed point. When the number of fundamental matters NF > N − 2, there is

no physical Coulomb branch at infinite coupling 1/g2
0 = 0 with positive string tensions,

and therefore such theories are trivial.

For SO(2r) gauge theories with fundamental matter, the proof works identically

to the above case, as we will now show. The prepotential for the SO(2r) theory is

FSO(2r) =
1

g2
0

r∑
i=1

a2
i +

1

6

r∑
i<j

[(ai + aj)
3 + (ai − aj)3]− NF

6

r∑
i=1

a3
i . (4.27)

We again parametrize the fundamental Weyl chamber by the condition a1 ≥ a2 ≥ · · · ≥
ar ≥ 0. By computing derivatives of the above formula with respect to φi, we find that

the monopole tensions are given by

Ti<r =
(
∂ai − ∂ai+1

)
FSO(2r)

=
2

g2
0

(ai − ai+1) + 2(ai − ai+1)
i−1∑
j=1

aj

+ a2
i+1

(
1− 1

2
(N −NF − 2i− 2)

)
+
(ai

2
(N −NF − 2i)− 2ai+1

) (4.28)

Tr = (∂ar−1 + ∂ar)FSO(2r)

=
2

g2
0

(ar−1 + ar) + 2(ar−1 + ar)
r−2∑
j=1

aj

+ ar−1

(
2ar +

ar−1

2
(N −NF − 2r + 2)

)
+ a2

r

(
1− 1

2
NF

)
.

(4.29)

From the above expressions, we see that the only difference with the tensions Ti associ-

ated to the SO(2r+1) gauge theory is in the expression for Tr. By arguments identical

to the above case G = SO(2r + 1), we find again that the bound on the number of

fundamental flavors is NF ≤ N − 2, with the case NF = N − 2 corresponding to a

marginal theory.

4.3 Exceptional theories with rank ≤ 8

Rank 2

In the previous section, we confirmed that some 5d theories which go beyond the

constraints introduced in [8] are in fact consistent theories with interacting fixed points.
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We now turn our attention to the case of simple gauge groups G with rG = 2, namely

G = SU(3), Sp(2), G2.

We begin by classifying non-trivial SU(3) gauge theories. As discussed in the

previous section, SU(3)κ + NFF + NSymSym has two Weyl subchambers, assuming

the presence of fundamental hypermultiplets. Applying our main conjecture to the

Coulomb branch, we find the list of marginal SU(3) gauge theories displayed in Table

3. On the other hand, all the descendants of these theories obtained by integrating

out matter hypermultiplets have non-trivial 5d conformal fixed points. This full list

includes all known non-trivial 5d SU(3) gauge theories, SU(3)0 + 1F + 1Sym, and

SU(3)0 + 10F, and their descendants. Other theories in the list are new non-trivial

SU(3) theories we predict based on new criteria.

NSym NF κ F Cphys

1 0 3
2

SU(2)× U(1) 2φ1 = φ2 ≥ 0

1 1 0 A
(1)
1 × U(1) φ1 = φ2 ≥ 0

0 10 0 D
(1)
10 φ1 = φ2 ≥ 0

0 9 3
2

E
(1)
8 × SU(2) 2φ1 = φ2 ≥ 0

0 6 4 SO(12)× U(1) 2φ1 = φ2 ≥ 0

0 3 13
2

U(3)× U(1) 2φ1 = φ2 ≥ 0

0 0 9 U(1) 2φ1 = φ2 ≥ 0

Table 3. Marginal theories SU(3) with CS level κ, NSym symmetric and NF fundamental

hypermultiplets. The theories with κ < 0 can be obtained by the interchange φ1 ↔ φ2.

We now turn to Sp(2) gauge theories. Sp(2) gauge theories can only have funda-

mental and antisymmetric matter, again because the dimensions of other representa-

tions are too large to admit a positive semi-definite metric on the physical Coulomb

branch. There is a single Weyl chamber φ2 ≥ φ1 ≥ φ2/2 ≥ 0 in the Dynkin basis.

We find the marginal Sp(2) gauge theories listed in the Table 4. The global symmetry

algebras of these theories are all affine type [26]. Here A
(2)
N denote the affine algebras

with outer automorphism twists discussed in [29]. This means that all of them have

6d uplifts at their UV fixed points and their descendants have 5d CFT fixed points.

This list completely agrees with matter bounds for Sp(2) gauge theories given in [26].

Sp(2) + 1AS + 8F has a two-dimensional Coulomb branch at infinite coupling. This

implies that this theory has a two-dimensional tensor branch in 6d. Indeed, this theory

is the 6d rank-2 E-string theory on a circle.

Lastly, the G2 gauge theory can contain only fundamental hypermultiplets. This

theory has a single Weyl subchamber 2φ1 ≥ φ2 ≥ 3φ1/2 ≥ 0 in the Dynkin basis.
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NAS NF F Cphys

3 0 A
(2)
5 at θ=0, 2φ1 = φ2 ≥ 0

Sp(3)×U(1) at θ=π

2 4 A
(2)
11 2φ1 = φ2 ≥ 0

1 8 E
(1)
8 × SU(2) φ1, φ2 ≥ 0

0 10 D
(1)
10 φ1 = φ2 ≥ 0

Table 4. Marginal Sp(2) gauge theories with NAS antisymmetric, NF fundamental matters.

We find that these theories have a non-trivial physical Coulomb branch when NF ≤ 6.

The theory at NF = 6 has an affine type global symmetry algebra and thus it will be

uplifted to 6d at the UV fixed point [26].

NF F Cphys

6 A
(2)
11 2φ1 = φ2 ≥ 0

Table 5. A marginal G2 gauge theory with NF fundamental matters.

Rank 3

Let us start with the SU(4) gauge theories. An SU(4) gauge theory can have matter

hypermultiplets in the fundamental, the antisymmetric, and the symmetric represen-

tations. When the theory contains symmetric or antisymmetric hypermultiplets, there

are four distinguished Weyl chambers. We examine all these chambers and find the

list of marginal SU(4) theories in Table 6. Again, this list covers all previously known

SU(4) gauge theories in [8, 13–16, 21] and additionally it predicts many new interacting

5d gauge theories. The theories with NAS = 4, NSym = NF = 0 and κ = 0, 1, 2, 3, 4 are

all marginal theories which cannot be obtained from other theories by integrating out

massive matter.

Similarly, we can classify all non-trivial Sp(3) gauge theories. The list of marginal

Sp(3) theories are given in Table 7. We can also have half-hypermultiplets in the rank-

3 antisymmetric representation. However, due to the global anomaly described by

Witten in [32], consistent Sp(3) gauge theories with rank-3 antisymmetric matter must

also have an odd number of half-hypermultiplets in the fundamental representation.

The new criteria confirms that all previously known Sp(3) gauge theories in [8, 26] are

physical, with one exception. In [26], Sp(3) + 1
2
TAS+ 7

2
F+AS may have a fixed point

of 6d SCFT on a circle. However, we find that this theory has no physical Coulomb
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NSym NAS NF κ F Cphys

1 1 0 0 A
(1)
1 × U(1) 2φ1 ≥ φ2 ≥ φ1 = φ3 ≥ 0

1 0 2 0 A
(1)
2 × U(1) φ1 = φ2 = φ3 ≥ 0

1 0 0 2 U(1)2 φ1 = φ2/2 = φ3/3 ≥ 0

0 4 0 4 E
(2)
6 3φ1 ≥ φ3 ≥ φ1 = φ2/2 ≥ 0

0 4 0 1, 2, 3 Sp(4)× U(1) φ1 = φ2/2 = φ3 ≥ 0

0 4 0 0 A
(2)
7 φ1 = φ2/2 = φ3 ≥ 0

0 3 4 0 A
(2)
11 × U(1) φ1 = φ2/2 = φ3 ≥ 0

0 3 4 1 Sp(7)× U(1) φ1 = φ2/2 = φ3 ≥ 0

0 3 4 2 E
(2)
6 × SU(4) φ1 = φ2/2 = φ3 ≥ 0

0 3 0 5 Sp(3)× U(1) φ1 = φ2/2 = φ3/3 ≥ 0

0 2 8 0 E
(1)
7 ×B(1)

3 2φ1 ≥ φ2 ≥ φ1 = φ3 ≥ 0

0 2 7 3
2

B
(1)
9 φ1 = φ2/2 = φ3/2 ≥ 0

0 2 0 6 Sp(2)× U(1) φ1 = φ2/2 = φ3/3 ≥ 0

0 1 10 0 A
(1)
11 φ1 = φ2 = φ3 ≥ 0

0 1 8 2 E
(1)
8 × U(1) φ1 = φ2/2 = φ3/3 ≥ 0

0 1 0 7 SU(2)× U(1) φ1 = φ2/2 = φ3/3 ≥ 0

0 0 12 0 D
(1)
12 φ1 = φ2 = φ3 ≥ 0

0 0 8 3 E8 × U(1) φ1 = φ2/2 = φ3/3 ≥ 0

0 0 0 8 U(1) φ1 = φ2/2 = φ3/3 ≥ 0

Table 6. Marginal SU(4) theories with CS level κ, NSym symmetric, NAS antisymmetric,

NF fundamental matters. The theories with negative CS level are obtained by φ1 ↔ φ3.

branch. So our classification rules out this theory. It would be interesting to confirm

this result using other arguments.

Finally, we come to the case of 5d SO(7) gauge theories, which can have matter

hypermultiplets in fundamental and spinor representations. The marginal theories

SO(7) +NFF +NSS are listed in Table 8.

Rank 4

In this section, we discuss exceptional 5d gauge theories, with gauge algebras SO(8),

SO(9), F4, and SU(5). To begin, we consider SO(8) gauge theories. An SO(8) gauge

theory can have NF fundamental, NS spinor, and NC conjugate spinor representations.

When there is matter in these three representations, the Weyl chamber splits into six

distinct subchambers. We study each of these chambers and find the marginal theories
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NTAS NAS NF F Cphys

1 0 5 E
(1)
6 3φ1 ≥ φ3 ≥ 2φ1 = φ2 ≥ 0

1
2

1 5
2

Sp(4) φ1 = φ2/2 = φ3/3 ≥ 0
1
2

0 19
2

SO(19)× U(1) 2φ1 ≥ φ2 = φ3 ≥ φ1 ≥ 0

0 2 0 C
(1)
2 at θ=0, φ1 = φ2/2 = φ3/3 ≥ 0

Sp(2)×U(1) at θ=π

0 1 8 E
(1)
8 × SU(2) {2φ1≥φ3≥φ1 ∩ φ3≥φ2≥(φ1+φ3)/2} ∪

{3φ1≥φ3≥2φ1 ∩ 2φ1≥φ2≥(φ1+φ3)/2}, φ1 ≥ 0

0 0 12 D
(1)
12 φ1 = φ2 = φ3 ≥ 0

Table 7. Marginal Sp(3) gauge theories with NTAS rank-3 antisymmetric, NAS antisym-

metric, NF fundamental matters.

NS NF F Cphys

7 0 Sp(7)× U(1) φ1 = φ2/2 = φ3 ≥ 0

6 1 A
(2)
11 × SU(2) φ1 = φ2/2 = φ3 ≥ 0

5 2 C
(1)
7 φ1 = φ2/2 = φ3 ≥ 0

4 3 E
(2)
6 × A(2)

5 φ1 = φ2 ≥ φ3 ≥ φ1/2 ≥ 0

2 4 A
(2)
12 φ1 = φ2 = 2φ3 ≥ 0

Table 8. Marginal SO(7) gauge theories with NS spinor and NF fundamental matters.

summarized in Table 9d. Due to the triality of the D4 Dynkin diagram, given such an

SO(8) gauge theory, there exists another SO(8) gauge theory obtained by permuting

NF, NS, NC. However, we stress that the physical Coulomb branches associated to

different permutations are in general not identical. These results cover all known cases

of SO(8) gauge theories [26].

For SO(9) gauge theories, there can be NF fundamental and NS spinors. When

spinor matter is included, the fundamental Weyl chamber splits into three subchambers.

We study each of these chambers and find the marginal theories summarized in Table

9e.

For SU(5) gauge theories, we can consider hypermultiplets in the antisymmetric

and the fundamental representations. We find four marignal theories as summarized

in Table 9a. We would like to remark that our criteria for SU(5) 3
2

+ 3AS + 2F is more

involved. We find that this theory has a single sub-chamber which has a region CT>0

with positive string tensions and positive definite metric at infinite coupling. Therefore,
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naively, this theory is not marginal and it may have a 5d SCFT fixed point at UV.

However, a careful analysis shows us that the boundary ∂CT>0 of the region is irrational.

This indicates that this sub-chamber should not be a physical Coulomb branch. We

expect that there exists a flop transition point where some non-perturbative instantons

become massless so that we cannot reach the irrational boundary. We expect that, after

taking into account the flop transition, this theory becomes marginal. The enhanced

affine-type global symmetry of this theory in Table 9a supports this conjecture. The

Coulomb branch with irrational boundaries and the geometric consideration associated

to it will be discussed in Section 4.4.

Finally, we come to the case of G = F4. Since the only representation with dimen-

sion smaller than the adjoint is the fundamental representation, an F4 gauge theory can

only have fundamental hypermultiplets. In this case, the Weyl chamber only consists

of a single component, and therefore the task of determining a bound on the number

NF of fundamental half-hypers is straightforward. We find that NF ≤ 3 and all these

theories have 5d conformal fixed points at UV. So all the F4 theories are non-marginal.

The physical Coulomb branch of the theory with NF = 3 is given by

Cphys = {2φ1 > φ2, φ1 + 2φ3 > 2φ2, 2φ4 ≥ φ3, 2φ3 > φ2 + φ4}. (4.30)

Rank 5,6,7,8

For SU(6) theories, we can have NTAS rank-3 antisymmetric hypermultiplets. Since

TAS is pseudo-real, we can add half-hypermultiplets which we donote by NTAS = 1/2.

The marginal SU(6) theories are summarized in Table 10a. For SU(7) theories, we can

also have rank-3 antisymmetric hypermultiplets, but only a single full-hypermultiplet is

allowed. All the exceptional cases have NTAS = 1. The SU(7) theories are summarized

in Table 11a. The first two of them are marginal. However, due to computational limits,

we could not clearly identify the last theory whether it is non-marginal or exotic, which

will be discussed in Section 4.4. For SU(8)κ + NTASTAS we find that there are no

non-trivial exceptional SU(8) theories for any value of NTAS.

For SO(10) theories, we can have NS spinor and NF fundamental hypermultiplets.

The marginal SO(10) theories are summarized in Table 10b. For SO(11) theories, we

can have 2NS spinor half-hypermultiplets and NF vector hypermultiplets. The marginal

SO(11) theories are summarized in Table 10c. For SO(12) theories, we can have NF

fundamental hypermultiplets, along with 2NS spinor and 2NC conjugate spinor half-

hypermultiplets. So we have a large number of exceptional theories as summarized

in Table 11b. Note that the last theory in this table could either be non-marginal or

exotic, as we are presently unable to verify its status due to computational limitations.
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NAS NF |κ| F

3 3 0 C
(1)
3 × SU(3)

3 1 3 SU(4)× SU(2)× U(1)

0 5 11
2

SO(10)× U(1)

3 2 3
2

E
(2)
6 × U(1)

(a) Exceptional SU(5)κ gauge theories

with NAS antisymmetric, NF fundamen-

tal matters. The first three are marginal

theoriese and the last one is an exotic the-

ory.

NTAS NF F
1
2

4 SO(8)× U(1)

(b) Marginal Sp(4) gauge theories with

NTAS rank-3 antisymmetric, NF funda-

mental matters.

NF F

3 Sp(3)× SU(2)

(c) Exceptional F4 gauge theories with NF

fundamental matters.

NS NC NF F

5 2 0 A
(2)
14

5 1 1 A
(2)
13

4 4 0 E
(2)
6 × E(2)

6

4 3 1 F
(1)
4 × Sp(4)

4 2 2 A
(2)
7 ×D(2)

7

3 3 2 C
(1)
6 × Sp(2)

(d) Marginal SO(8) gauge theories with

NS spinor, NC conjugate spinor, NF fun-

damental matters. Due to triality of the

D4 Dynkin diagram, for each of the above

theories there exists an entire family of

theories obtained by permutation of the

values (NF, NS, NC).

NS NF F

4 1 E
(2)
6 × SU(2)

3 3 C
(1)
3 × Sp(3)

2 5 A
(2)
9 × A(2)

4

1 6 A
(2)
14

(e) Marginal SO(9) gauge theories with

NS spinor, NF fundamental matters.

Table 9. Rank 4 exceptional gauge theories.

All the other theories are marginal. For SO(13) theories, we can have 2NS spinor

half-hypermultiplets and the marginal theories are summarized in Table 11c. SO(14)

case has merely one exceptional theory with a NS = 1 spinor (or NC = 1 conjugate

spinor) and NF = 6 fundamental hypermultiplets as listed in Table 11d. An E6 gauge

theory can have NF ≤ 4 fundamental hypermultiplets and an E7 gauge theory can have

2NF ≤ 6 fundamental half-hypermultilets. However, we are not sure whether or not

the theories E6 +4F and E7 +3F are exotic. See Section 4.4 for more discussions about

this. The N = 1 E8 gauge theory cannot have any hypermultiplets, and the E8 theory

without matter flows to a 5d SCFT at the UV fixed point.
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NTAS NSym NAS NF |κ| F

2 0 0 0 0 A
(2)
2 × A(2)

2
3
2

0 0 5 0 SO(3)×SU(5)×U(1)2

3
2

0 0 3 2 SO(3)×SU(3)×U(1)2

3
2

0 0 0 9
2

SO(3)× U(1)2

1 0 1 4 0 D
(1)
4 × A(1)

1 × U(1)

1 0 1 3 3
2

A
(2)
2 × A(2)

2 × SU(4)

1 0 1 0 4 SU(2)× U(1)2

1 0 0 10 0 D
(1)
10

1 0 0 9 3
2

E
(1)
8 × A(1)

2
1
2

1 0 1 0 ?
1
2

1 0 0 3
2

?
1
2

0 2 2 3
2

D
(3)
4 × SU(2)× U(1)

1
2

0 2 2 1
2

SU(5)× U(1)
1
2

0 2 0 7
2

SU(3)× U(1)
1
2

0 1 9 0 SU(11)× U(1)
1
2

0 1 8 3
2

SO(16)×SU(2)×U(1)
1
2

0 0 13 0 SU(13)× U(1)2

1
2

0 0 9 3 SU(9)× U(1)2

0 0 3 0 3 D
(3)
4 × SU(2)

0 0 3 0 1 Sp(3)× U(1)

0 0 3 0 0, 2 SU(3)× U(1)2

0 0 0 0 9 U(1)

(a) Marginal SU(6)κ gauge theories with NTAS

rank-3 antisymmetric, NSym symmetric, NAS an-

tisymmetric, NF fundamental matters.

NS NF F

4 2 B
(1)
3 × SU(4)

3 4 C
(1)
3 × Sp(4)

2 6 A
(2)
11 ×A(2)

2 ×A(1)
1

1 7 A
(2)
15

(b) Marginal SO(10) gauge the-

ories with NS spinor, NC con-

jugate spinor, NF fundamental

matters.

NS NF F
5
2

0 Sp(2)× U(1)

2 3 A
(2)
5 ×A(2)

2 ×A(2)
2

3
2

5 A
(2)
2 × Sp(5)× U(1)(2)

1 7 A
(2)
13 × A(1)

1 × U(1)(2)

1
2

8 Sp(9)

(c) Marginal SO(11) gauge the-

ories with NS spinor, NF funda-

mental matters. We use U(1)(2)

for a U(1) compactified with an

outer automorphism twist.

Table 10. Rank 5 exceptional gauge theories.

4.4 Exotic exceptional theories

In our main conjecture, we require that a physical Coulomb branch should have rational

boundary. In geometry this means that a physical Coulomb branch must be determined

as a subregion of the Weyl chamber bounded by hyperplanes where some of 4-cycles

shrink to 2-cycles or contract to a point. In addition, it is necessary that when a 4-cycle

shrinks to a 2-cycle, there must exist an associated shrinking 2-cycle. Such hyperplanes

can be characterized by the condition that some of string tensions vanish, i.e. Ti(φ) = 0
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NTAS NF |κ| F

1 6 0 D
(1)
6

1 5 3
2

SO(10)×SU(2)×U(1)

1 0 5 U(1)2

(a) Exceptional SU(7)κ gauge theories

with NTAS rank-3 antisymmetric and NF

fundamental matters. The first two are

marginal, while the last one could be non-

marginal or exotic.

NS NC NF F
5
2

0 0 Sp(2)× U(1)

2 0 4 E
(2)
6 × A(2)

2 × A(2)
2

3
2

1 1 SU(4)× SU(2)
3
2

1
2

4 A
(2)
2 × Sp(4)

3
2

0 6 Sp(6)×SU(2)×U(1)

1 1 4 A
(2)
7 × A(1)

1 × A(1)
1 × U(1)(2)

1 1
2

6 Sp(6)× SU(2)2

1 0 8 A
(2)
15 × A(1)

1
1
2

1
2

8 A
(2)
15 × U(1)(2)

1
2

0 9 Sp(9)× U(1)

2 1
2

0 SU(4)

(b) Exceptional SO(12) gauge theories

with NS spinor, NC conjugate spinor, NF

fundamental matters. The last theory

could be non-marginal or exotic and the

other theories are all marginal.

NS NF F

1 5 A
(2)
9 × A(1)

1
1
2

9 A
(2)
17

(c) Marginal SO(13) gauge theories with

NS spinor, NF fundamental matters.

NS NF F

1 6 A
(2)
11 × A(1)

1

(d) Marginal SO(14) gauge theories with

Ns spinor, NF fundamental matters.

NF F

4 SU(4)×SU(2)×U(1)

(e) Exceptional E6 gauge theories withNF

fundamental matters. This theory can be

non-marginal or exotic.

NF F

3 ?

(f) Exceptional E7 gauge theories with NF

fundamental matters. This theory can be

non-marginal or exotic.

NF F

0 ∅
(g) E8 gauge theory has no matters.

Table 11. Rank 6,7,8 exceptional gauge theories.

for some i. The rational boundary condition can therefore be recast as
∑

j njφj = 0

with nj ∈ Z for each hyperplane.

However, we notice that there are some cases where sub-chambers are bounded

by irrational boundaries at
∑

j njφj = 0 with nj ∈ R\Q. Such irrational boundaries

are not allowed due to geometric considerations, as the class of the would-be 2-cycle

that vanishes on such a boundary would have irrational coefficients and therefore be

ill-defined. We also remark that the dictionary between geometry and field theory

– 38 –



teaches us that these boundaries can equivalently be characterized by the vanishing of

some BPS particle with irrational central charge, and therefore we find we must also

dismiss such boundaries on physical grounds. This may imply that either we cannot

enter such sub-chambers or that we will encounter a geometric transition such as a flop

transition before we meet the irrational hyperplane, which cannot be captured by our

perturbative analysis. When this happens, we admit that our perturbative analysis

using the condition Ti(φ) = 0 cannot determine the physical Coulomb branch in the

sub-chamber exactly. If a theory has another sub-chamber with rational boundaries, we

can apply our criteria for the sub-chamber and classify the theory accordingly. However,

when all the sub-chambers are bounded by irrational hyperplanes, it turns out to be

rather difficult to determine whether or not the theory has a 5d CFT fixed point. We

find a handful of such exotic theories, which we describe in more detail below.

For example, 5F + SU(2) × SU(2) + 2F has a single physical sub-chamber with

irrational boundaries. The sub-chamber is given by

2

3
φ1 < φ2 <

1√
2
φ1 , (4.31)

where φ1, φ2 are scalar vevs of two SU(2) gauge groups respectively. In the above sub-

chamber, string tensions are positive and moreover the metric is positive definite at

infinite coupling. However, it is clear from the above expression that one of the bound-

aries is defined by an irrational linear combination of Coulomb branch parameters,

φ1 +
√

2φ2 = 0. (4.32)

From geometric considerations, we believe this boundary cannot correspond to the van-

ishing of a 4-cycle with rational divisor class, and hence the correspondence between

BPS data and geometric data is invalid in this description. This is an indication that a

flop transition of some sort—possibly due to the appearance of massless instantons—

must occur before we meet this wall on the Coulomb branch. The presence of spurious

boundaries of the above type is indicative of our inability to compute instanton masses

and other non-perturbative data using only the perturbative expression for the prepo-

tential.

It turns out that the 5F+SU(2)×SU(2)+2F theory is dual to SU(3) 3
2
+9F. These

two dual theories admit the same brane construction in Type IIB string theory. As we

discussed in Section 4.3, the dual SU(3) gauge theory has non-trivial 6d completion in

the UV fixed point having a zero eigenvalue of the metric at infinite coupling. In fact,

we can obtain the SU(2)×SU(2) gauge theory description from the SU(3) gauge theory

by turning on mass parameters such as a1 > m1,2,3,4,5,6,7 > a2, a2 > m8,9 > a3 where

a1,2,3 are Coulomb parameters of SU(3) and mi is the mass of the i-th hypermultiplet.
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This corresponds to two consecutive flop transitions in the corresponding geometry.

This supports our expectation that the geometry undergoes flop transitions before we

meet the irrational boundary in the Coulomb branch. This example also shows that

while we may not be able to reach the UV fixed point with the SU(2)× SU(2) gauge

theory description, the 6d fixed point can nevertheless be attained by way of the SU(3)

gauge theory description after the flop transitions. Therefore, when we have only

physical Coulomb branches bounded by irrational curves, then the naive application of

our criteria cannot tell us whether or not the theory is marginal. We call such theory

as exotic.

In our classification, we have encountered five possible cases of exotic theories, only

one of which we have explicitly confirmed as such. They are:

1. SU(5) 3
2

+ 3AS + 2F (confirmed)

2. SU(7)5 + 1TAS (undetermined)

3. SO(12) + 2S + 1
2
C (undetermined)

4. E6 + 4F (undetermined)

5. E7 + 3F (undetermined)

For the first case above, the SU(5) theory, Cphys consists of a single component with

irrational boundaries. Within this chamber, as expected, the string tensions are positive

and the metric is positive definite. However, we expect that this theory has a 6d fixed

point based on the affinization of the flavor symmetry E
(2)
6 × U(1) according to a 1-

instanton analysis. However, if this is case, it remains unclear what dual physical

description we must introduce (as in the case of 5F +SU(2)×SU(2) + 2F) in order to

reach the 6d fixed point through the Coulomb branch.

We have also numerically confirmed the existence of physical Coulomb branches

Cphys for the other theories in the above list. Unfortunately, due to computational

limitations, we have been unable to precisely test whether or not the boundaries of

these regions are rational or irrational. For this reason, it is unclear whether or not

these theories are exotic in the sense we have described above. However, we note the

two exceptional theories in the above list each have two distinct candidates for their

6d lifts, namely 6d SCFTs corresponding to a single curve with self-intersection −n,

where n = 1, 2. In the case of E6, the n = 1 theory has NF = 5, while the n = 2 theory

has NF = 4. In the case of E7, the n = 1 theory has NF = 7/2, while the n = 2 theory

has NF = 3.
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5 6d Theories on a Circle

In this section we present some 6d SCFTs that are the lifts of some of the marginal

5d theories we found. We note that most of these theories have already been discussed

elsewhere in the literature. We discuss the new theories in detail, while for the known

theories we merely quote the results.

5.1 Generic Sp(N) and SU(N) with fundamental and antisymmetric matter

We start with the cases Sp(N) and SU(N), for generic N , with matter in the fun-

damental and antisymmetric representations. These theories can be constructed with

ordinary brane web systems, where the Sp(N) and SU(N) theories with antisymmetric

matter can be brought to this state by using an O7−-plane and then decomposing it into

a pair of 7-branes [17]. The 6d lifts of these types of theories were studied extensively

in [14, 21, 31, 33], and we shall quote their results for the theories of interest.

The 6d SCFTs appearing in these cases can all be engineered by a brane system

involving NS5-branes, D6-branes and D8-branes in the presence of an O8−-plane. When

compactified and T-dualized the system becomes a brane configuration of NS5-branes,

D5-branes and D7-branes in the presence of two O7−-planes. Upon decomposing the

two O7−-planes to a pair of 7-branes, one obtains the brane webs of the associated 5d

gauge theories.

SU(N)0 + (2N + 4)F and Sp(N − 1) + (2N + 4)F

The 5d gauge theory SU(N)0 + (2N + 4)F is known to lift to 6d [34]. The 6d lift

was worked out in [15, 31], and is the so-called (DN+4, DN+4) conformal matter [35].

This theory has a low-energy description on the tensor branch as the 6d gauge theory

Sp(N − 2) + (2N + 4)F. In F-theoretic notation, this theory is denoted

spN−2

1 [SO(4N + 8)]

It is straightforward to see that the dimensions of the Coulomb branch in both de-

scriptions agree. Also the 1-instanton spectrum of the 5d theory is consistent with an

enhanced D
(1)
2N+4, agreeing with the spectrum expected from the compactification of

the 6d theory on a circle.

The 5d gauge theory Sp(N − 1) + (2N + 4)F also lifts to 6d and is in fact dual to

SU(N)0 + (2N + 4)F on account of both theories lifting to the same 6d SCFT [31].
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SU(N)0 + 1AS + (N + 6)F

The 5d gauge theory SU(N)0 + 1AS + (N + 6)F lifts to the 6d SCFT which has a

low-energy description on the tensor branch as the 6d gauge theory SU(N−1)+1AS+

(N + 7)F [21, 31]. In F-theoretic notation this 6d SCFT is denoted

suN−1

1 [SU(N + 7)]

Again it is easy to see that the Coulomb branch dimensions agree. The 6d and 5d

theories both have a Higgs branch, associated with giving a vev to the antisymmetric

matter, upon which we reduce to the previous case.

We can also compare the global symmetries of these theories, which are summarized

in Tables 1a and 2. For N > 4 The 1-instanton analysis suggests that the current

spectrum of the 5d theory is consistent with A
(1)
N+6 which again agrees with the 6d

theory on a circle. There are however additional currents when N ≤ 5. For N = 3 an

antisymmetric hypermultiplet is identical to an antifundamental hypermultiplet so in

5d this case is identical to the previous case. This feature is correctly captured by the 6d

description, as for SU(2) the antisymmetric representation is a singlet. For N = 4 the

antisymmetric represenation is real and the U(1) associated with this representation

in the general case is perturbatively enhanced to SU(2). There are then additional

1-instanton currents, and the spectrum of the 5d theory is consistent with a larger

enhancement to A
(1)
11 . This again agrees with the perturbative enhancement in 6d.

Finally when N = 5 we also get additional currents, and the spectrum is con-

sistent with an enhancement to A
(1)
11 × A(1)

1 . This again agrees with the perturbative

enhancement in 6d.

SU(N)0 + 2AS + 8F

The 5d gauge theory SU(N)0 + 2AS + 8F has different 6d lifts depending on whether

N is even or odd [21]. The 6d lift can be described on the tensor branch as a low-energy

6d semi-gauge theory. The description for these two cases is shown in Figure 9, where

(a) is the N = 2n case, and (b) is the N = 2n+ 1 case. Alternatively, we also provide

an F-theoretic description of both cases,

[E7] 1
su2
2

su2
2 · · ·

su2
2

su2
2 [SU(2)]

[SU(2)]

[SO(16)]
sp1
1

su2
2

su2
2 · · ·

su2
2

su2
2 [SU(2)]
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SU

𝑟𝑎𝑛𝑘 1

𝐸 𝑠𝑡𝑟𝑖𝑛𝑔 2 2

SU

. . .

SU

2

SU

2 2

2

n − 1

SU

2 2

SU

. . .

SU

2

SU

2 2

n

2

SU

8

(𝑎)

(𝑏)

Figure 9. The low-energy description on the tensor branch of the 6d SCFTs which are the

lifts of the 5d SU(N)0 + 2AS + 8F gauge theories. Quiver (a) describes the case N = 2n,

while quiver (b) the case N = 2n+ 1. In quiver (a) the arrow into the rank 1 E-string theory

represents gauging a subgroup SU(2) ⊂ E8 of the global symmetry group of the E-string

theory.

where the upper diagram is the N = 2n case, the lower diagram is the N = 2n + 1

case. Note that there are n− 1 2 curves in both diagrams above.

One can see that the Coulomb branch dimensions of the 5d theories and 6d theories

on a circle agree. The global symmetries also agree, where instantons in the 5d gauge

theory lead to additional conserved currents consistent with what is expected from the

6d theory on a circle. The results for the various cases are summarized in Tables 1a

and 2.

SU(N)±3
2

+ 2AS + 7F

The 5d gauge theory SU(N)± 3
2
+2AS+7F is also known to lift to 6d, and again goes to

different 6d theories depending on whether N is even or odd. The cases N = 3, 4, 5 were

explicitly discussed in [21] and it is straightforward to generalize the construction to

generic N . The 6d SCFTs can be again conveniently represented using the low-energy

description on the tensor branch. Descriptions of the two cases are shown in Figure

9, where (a) is the N = 2n case, and (b) is the N = 2n + 1 case. We also provide
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𝑟𝑎𝑛𝑘 1

𝐸 𝑠𝑡𝑟𝑖𝑛𝑔 2 2

SU
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(𝑏)

N= (2,0)
𝑡𝑒𝑛𝑠𝑜𝑟

SU

2 2

SU

. . .
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N= (2,0)
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3

2

3

2

Figure 10. The low-energy description on the tensor branch of the 6d SCFTs which are the

lifts of the 5d SU(N)± 3
2

+ 2AS + 7F gauge theory. Quiver (a) describes the case N = 2n

while quiver (b) the case N = 2n+ 1. The arrow into the N= (2, 0) tensor, which appears on

the rightmost in both quivers, represents gauging the SU(2) global symmetry of the tensor

(this is part of its Sp(2) R-symmetry that is seen as a global symmetry from the N= (1, 0)

point of view).

F-theoretic descriptions,

[SO(16)]
sp1
1

su2
2

su2
2 · · ·

su2
2

su2
2

II

2

[SU(2)]

[E7] 1
su2
2

su2
2 · · ·

su2
2

su2
2

II

2

[SU(2)] [SU(2)]

where the upper diagram is the N = 2n case and the lower diagram is the N = 2n+ 1

case. Note that there are n − 1 2 curves in the upper diagram and n 2 curves in the

lower diagram.

One can see that the Coulomb branch dimensions of the 5d theories and 6d theories

on a circle agree. The global symmetries also appear to agree, at least as far as can

be seen from the 1-instanton analysis. Again the results for the various cases are

summarized in Tables 1a and 2.
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Sp(N − 1) + 1AS + 8F and SU(N)±N
2

+ 1AS + 8F

The case of Sp(N − 1) + 1AS + 8F is well known to lift to the rank N − 1 E-string

theory [36]. On the other hand, to our knowledge SU(N)±N
2

+ 1AS + 8F, for N > 3,

has not been discussed in the literature. From brane webs we can argue that the 5d

gauge theory SU(N)±N
2

+ 1AS + 8F should have a 6d lift.

To argue this we consider the brane web description of this theory, which can be

engineered using an O7−-plane and resolving it. The brane web looks slightly different

depending on whether N is even or odd. For simplicity, we shall show here only the N

even case, though most of the steps and results apply also to the N odd case.

Figure 11 shows the web for an SU(N)N−NF+8

2

+ 1AS + NFF gauge theory. For

simplicity we have only shown the external legs and not how these connect inside the

web, as that is irrelevant for this discussion. By manipulating the web we arrive at the

web on the bottom left of Figure 11. When N > 10 one of the legs collides with another

leg and further transitions ensue. We can calculate the monodromy “felt” by this leg

when going around the entire web, and we find it to be the SL(2,Z) transformation

T 8−NF . Thus we see that if NF < 8 and the transition does not terminate before going

full circle, the brane will come back less divergent. Therefore this process will terminate

after a finite number of rotations. In particular, for NF = 0, this means that a fixed

point exists for every N . For NF = 8 the brane returns back to itself while for NF > 8

the brane returns more divergent.

This suggests then that for NF < 8 a 5d fixed point exists, while for NF > 8

neither a 5d nor a 6d fixed point exists. The case NF = 8 seems to be a 6d lift. For

N ≤ 10, the process already terminates at the step shown in the bottom left of Figure

11, and we can show this explicitly. Furthermore we can argue that this theory is dual

to Sp(N − 1) + 1AS +NFF.

This follows from 7-brane manipulations. We have shown the relevant steps in

Figure 12 for the simpler case of N = 6. The manipulations for the other cases

are similar, and we omit them for brevity. Therefore, in that range at least, the

SU(N)N−NF+8

2

+ 1AS + NFF class of theories go to a 5d fixed point for NF < 8, and

the SU(N)±N
2

+ 1AS + 8F theory should lift to the 6d rank N − 1 E-string theory. We

suspect this to be true for all N .

5.2 Generic SO(N) and SU(N) with symmetric matter

Next we examine the cases of SO(N) and SU(N) theories with matter in the symmetric

representation for generic N . This class of theories can be engineered in string theory by

brane webs in the presence of O7+-planes[17]. The 6d lifts for SO(N) with fundamental
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𝑁𝐹 𝑁𝐹
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(2n − 1)(5, −1)
𝑁𝐹n

(8n − 13,−(2n − 3))
n + 5

3
𝑁𝐹

3n − 4
(2n − 5,−1)

(2n − 1)(5, −1)

7n − 5

2n − 1

Figure 11. Brane web manipulation for SU(N)N−NF+8

2

+ 1AS +NFF, in the case N = 2n.

For ease of drawing, only the external legs are shown. We use a black ‘×’ to represent the

NF 7-branes that give the flavors. The picture on the top left is for the initial web. Moving

the (3,−1) 7-brane through the single (1,−1) 5-brane leads to the picture in the top right.

Further moving the (3,−1) 7-brane through the n − 1 (1,−1) 5-branes leads to the picture

in the bottom right, where we have also moved the (5,−1) 7-brane through the (2n+ 3,−1)

5-brane. Finally, we move the (8n− 13,−(2n− 3)) 7-brane through all the (1,−1) and (1, 1)

5-branes leading to the picture at the bottom left. If n ≤ 5 then no further transitions are

required.

matter, and SU(N) with symmetric and fundamental matter were studied in [22], and

it is straightforward to extend these results to some of the other cases.

The 6d SCFTs in these cases can be engineered in string theory by a brane system

involving NS5-branes, D6-branes and D8-branes, but the compactification is done with

a Z2 twist in a discrete symmetry. In the brane system this discrete symmetry is

manifested as worldsheet parity combined with a reflection in the direction orthogonal

to the D8-branes. Performing T-duality, the authors of [22] mapped this system to a

configuration involving NS5-branes and D5-branes in the presence of an O7+ and O7−-

planes. Decomposing the O7−-plane then leads to the brane webs for the 5d gauge

theories.
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5(3,−1)
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Figure 12. Brane web manipulation for SU(6) 14−NF
2

+ 1AS + NFF. The picture on the

top left is just the web on the bottom left of Figure 11 for the case of n = 3. Moving the

(1,−1) 7-brane from top to bottom, we obtain the web on the top right. Performing an

SL(2,Z) transformation T 2, we end up with the web on the bottom right—this web is a

known description of Sp(5) + 1AS +NFF, suggesting that these two theories are dual up to

free hypermultiplets.

SO(N) + (N − 2)F

The case of 5d SO(N) + (N − 2)F gauge theory is known to lift to a 6d SCFT. The 6d

SCFT was worked out in [22] to be the one living on 2 M5-branes probing a C2/ZN−2

singularity. The compactification is done with a Z2 twist in a discrete symmetry of the

6d SCFT. Particularly, the 6d SCFT has a 1-dimensional tensor branch along which

the theory has a low-energy description as an SU(N − 2) + (2N − 4)F gauge theory.

In F-theory it is described by:

suN−2

2 [SU(2N − 4)]

The discrete symmetry in question acts on the gauge theory as charge conjugation. It

can also be thought of as the orbifold generalization of the outer automorphism twist

compactifications of the A type (2, 0) theory.

The global symmetry of the 6d theory is consistent with the A
(2)
2N−5 found for

SO(N) + (N − 2)F using 1-instanton analysis. Additionally, the Coulomb branch
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dimension agrees between the two, after accounting for the fact that the twist projects

out the odd dimension Coulomb branch generators that would have come from the

SU(N − 2) vector upon reduction to 5d.

SU(N)0 + 1Sym + (N − 2)F

This case was also covered in [22]. The 6d lift is the SCFT living on 3 M5-branes

probing a C2/ZN−1 singularity, which has the F-theoretic description:

[SU(N − 1)]
suN−1

2
suN−1

2 [SU(N − 1)]

The compactification is again done with a twist, generalizing the outer automorphism

twist now to the case of the A2 (2, 0) theory, so the twist also acts non-trivially on the

tensors. In the low-energy gauge theory description, (N − 1)F +SU(N − 1)×SU(N −
1)+(N−1)F, this discrete symmetry is manifested as a combination of quiver reflection

and charge conjugation. As consistency checks, we note that the global symmetries and

Coulomb branch dimensions agree.

SU(N)0 + 1Sym + 1AS

We can also consider the case of 5d SU(N)0 + 1Sym + 1AS. This theory also lifts

to 6d, and behaves differently depending on whether N is even or odd. For odd N

we can find the 6d SCFT by generalizing the results of [22]. We find the 6d SCFT

to be the one living on N M5-branes probing a C2/Z2 singularity, where again the

compactification is done with a Z2 twist generalizing the outer automorphism twist for

the AN−1 (2, 0) theory. The 6d SCFT has a low-energy gauge theory description as

2F + SU(2) × SU(2) · · ·SU(2) × SU(2) + 2F, where there are N − 1 SU(2) groups.

This theory also has the following F-theory description:

[SU(2)]
su2
2

su2
2 · · ·

su2
2

su2
2 [SU(2)]

where there are N − 1 2 curves in the above diagram. The Z2 discrete symmetry by

which we twist acts on the gauge theory as quiver reflection. The web for the even N

case has a different form, and appears to go to a different type of theory.

We can again perform several consistency checks for the odd N case. As indicated

in Table 1a, the symmetry of the 5d theory is at least A
(1)
1 × U(1). This is consistent

with the global symmetry of the twisted theory. We also note that the Coulomb branch

dimension agrees.

It is instructive to also consider Higgs branch flows. For instance, the 5d theory

has a flow from SU(N)0 + 1Sym + 1AS to SO(N) + 1AS triggered by giving a vev

to the symmetric matter, and one to Sp(N−1
2

) + 1S triggered by giving a vev to the
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antisymmetric matter—these are just the maximally supersymmetric SO and Sp gauge

theories. These flows should then also exist in the 6d theory. Indeed we can go on the

Higgs branch of the 6d SCFT and flow to either the AN−1 or AN−2 (2, 0) theories.

Compactification with a twist of the latter yields maximally supersymmetric SO(N)

while the same for the former yields maximally supersymmetric Sp(N−1
2

) (with theta

angle θ = π) [29].

This leaves the case of even N , which seems to be of a different nature than the

theories discussed so far. This is also apparent from the Higgs branch discussion. We

again can flow to either the maximally supersymmetric SO(N) or Sp(N
2

) gauge theory.

However the former when N is even lifts to the DN
2

type (2, 0) theory with untwisted

compactification. The latter, alternatively, lifts to twisted compactifications of either

the DN
2

+1 type (2, 0) theory or the AN type (2, 0) theory depending on the theta angle

of the 5d theory [29]. It seems quite non-trivial to find a theory with this behavior,

and therefore we reserve a determination of this case for future work.

SU(N)±N
2

+ 1Sym

To our knowledge this class of theories has not been discussed in the literature. We

can argue that this class should exist, at least as a 6d lift gauge theory, as follows. We

can try to engineer this theory by using brane webs in the presence of an O7+-plane.

The existence of the theory is entirely determined by the asymptotic behavior of the

5-branes. Consider changing the O7+-plane to an O7−-plane with 8 D7-branes. This

does not change the monodromy of the object and so does not change the asymptotic

behavior of the 5-branes. However, this changes the gauge theory to the previously

discussed SU(N)±N
2

+ 1AS + 8F, which we have argued has a 6d lift. Therefore, it

is reasonable to assume that SU(N)±N
2

+ 1Sym also has a 6d lift. We note that the

equivalence in monodromy between an O7+-plane and an O7−-plane with 8 D7-branes

is the brane web manifestation of the invariance of the prepotential under exchang-

ing a single symmetric hypermultiplet with a single antisymmetric and 8 fundamental

hypermultiplets.

We can then ask what theory is the 6d lift. By examining the brane web in the

case N = 3, we can reformulate the problem in a manner where we are in a position

to apply the results of [22]. We then find that the 6d theory is the A4 (2, 0) theory

compactified with an outer automorphism twist. This implies that this theory is dual

to maximally supersymmetric Sp(2)π, and should thus have an enhancement of SUSY

in the UV. Similarly, for N > 3, we suspect that the 6d theory is dual to maximally

supersymmetric Sp(N − 1)π and goes to the A2N−2 (2, 0) theory compactified with an

outer automorphism twist.
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6 Discussion and Future Directions

In this paper, we have given a clear physical explanation for why the naive Coulomb

branch (i.e. the fundamental Weyl chamber) is not necessarily physical, and why it is

therefore necessary to restrict a weakly-coupled gauge theory description to a subset of

the Coulomb branch satisfying certain necessary physical criteria. It is necessary that

the BPS spectrum consists of degrees of freedom with positive masses and tensions,

and the metric be positive definite on this physical region of the Coulomb branch. By

extending these ideas, we have proposed a set of conjectures in Section 3.1, 3.2 which

we can use for the classification of 5d N = 1 gauge theories with interacting fixed

points.

By using these conjectures, we have given an exhaustive classification of 5d N = 1

gauge theories with simple gauge group, which to our knowledge includes all known

examples in the literature as a subset—for example, the theories described in [13–

17, 21, 22, 26]. Our classification consists of two types of theories, namely standard

theories (see Table 1) and exceptional theories (see Tables 3-11). Our strategy has been

to identify extremal theories saturating the matter bounds imposed by our physical

criteria and then use the fact that all descendants of such extremal theories will have

non-trivial UV fixed points.

In practice, we used our main conjecture to test a number of low rank cases explic-

itly using a symbolic computing tool. Furthermore, we combined Conjectures 2 and

3 to circumvent the problem that a complete analysis of the naive Coulomb branch

rapidly becomes intractable as the rank of the gauge group increases; the combination

of our conjectures enabled us to make a full classification using a mixture of symbolic

and numerical searches. The standard theories are particularly tractable and thus we

were able to perform the classification by hand. Computational expense has only hin-

dered our understanding of a few isolated cases of possible exotic theories, as discussed

in Section 4.4.

There are a plethora of open questions that remain unresolved. The first ques-

tion concerns our main conjecture, which asserts that the positivity of monopole string

tensions can correctly identify the physical Coulomb branch when all of the mass pa-

rameters are switched off. As we explained in Section 3.1, the criterion of positive string

tensions can in general miss flop transitions associated to the emergence of massless

instantons without tensionless strings (note that the perturbative flop transitions are

already captured by the gauge theory interpretation of the prepotential.) However,

we remark that the massless instanton spectrum can be captured by an explicit com-

putation of the BPS partition function as described in [37–42], and thus it would be

interesting to see if we could test our main conjecture against an explicit computation
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of the instanton spectrum.

Another puzzle is why, as asserted by Conjecture 2, the positivity of the monopole

string tensions guarantees the positivity of the metric. It is unclear from a mathematical

perspective why this property should hold true for any gauge theoretic prepotential

evaluated on the naive Coulomb branch, and moreover what properties of this function

are essential for this phenomenon. Futhermore, Conjectures 1 and 3 seem to lack both

mathematical proofs and physical explanations, given that these conjectures involve

testing regions of the naive Coulomb branch that are obviously unphysical.

As explained in Section 4.4, there are four potentially exotic theories that we were

not able to confirm due to computational limitations. With a better algorithm or more

computational resources, it is possible to check explicitly whether or not these theories

are indeed exotic. However, there is a more striking puzzle presented by the notion

of exotic theories. From geometric considerations, we expect that truly exotic theories

(such as SU(5) 3
2

+ 3AS + 2F) undergo some number of flop transitions before reaching

the irrational boundaries of the putative physical Coulomb branch. If these theories

could be constructed using geometry, this notion could tested explicitly. Alternatively,

dual descriptions (as in the case of 5F + SU(2) × SU(2) + 2F, which has a dual

description as SU(3) 3
2

+ 9F) that are valid in the vicinity of the irrational components

of the boundary could provide a clear indication that such theories are well-defined and

have an interacting fixed point.

Lingering puzzles aside, there are also many future directions to be explored. For

instance, many of the 5d theories appearing in our classification are still lacking a

realization either in terms of brane configurations or local Calabi-Yau singularities,

and it would be desirable to work out such descriptions in order to provide further

evidence for the existence of these theories, as well as to capture the subtleties of the

non-perturbative physics. It would be worthwhile to explore the possibility that all

of the marginal theories we have identified can be obtained by compactifying some 6d

SCFT; developing an understanding of the 6d compactifications, including a possible

classification of the intermediary Kaluza-Klein theories, is critical for this purpose.

It would also be quite interesting to further develop a precise geometric under-

standing of the vanishing monopole string tensions and instanton masses that signal

the breakdown of an effective gauge theory description. The field theoretic expression

for F clearly encodes the appearance of massless electric particles in a collection of

hyperplanes w · φ+mf = 0 subdividing the fundamental Weyl chamber, across which

the Chern-Simons levels jump discontinuously. Geometrically, these “jumps” are in-

terpreted as the result of flops, which can be associated with the interchange of two

nonisomorphic resolutions of the same singular Calabi-Yau geometry sharing a com-

mon blowdown. Both field theoretically and geometrically these transitions are rather
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transparent. However it is much more difficult to analyze the extremal transitions as-

sociated with the vanishing of monopole tensions or instanton masses away from the

conformal point. This point is especially relevant for the distinction between rational

and ‘irrational’ classes characterizing the exotic theories in our classification.

Finally, we would like to extend our classification of simple gauge groups to a full

classification of 5d N = 1 SCFTs, including quiver gauge theories and non-Lagrangian

theories. It is obvious that a physically sensible theory should have a positive definite

metric on its physical Coulomb branch having only degrees of freedom with positive

messes and tensions. In principle, we can classify general theories with gauge the-

ory description by applying the same techniques we used for the present classification

though it may be practically a tremendous task at the moment. A classification of non-

Lagrangian theories in the same spirit as our current classification will require a better

understanding of how geometric constraints translate into constraints on field theory,

much as the case of the geometric description P2 in CY3 translates to the (formal) field

theory description SU(2) with NF = −1.
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A Mathematical Conventions

Much of the notation and content of the following section is adapted from [43].

A.1 Root and coroot spaces

Let R ⊂ VR be a set of roots in the root space VR, and let V ∨R be the coroot space

dual to VR. A subset S ⊂ R is called a system of simple roots if all elements e ∈ S are

linearly independent and every root e′ ∈ R belongs to the nonnegative or nonpositive
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integer linear span of S. A positive root is a positive linear combination of elements

of S, and similarly for negative roots. As suggested by this definition, there exists a

partition R = R+ ∪R− ∪R0, where R+ is the set of positive roots, R− = −R+ and R0

is the set of zero roots. To every choice of S, one can associate a distinguished Weyl

chamber C(S), where

C(S) = {φ ∈ V ∨R | 〈φ, e〉 ≥ 0 , e ∈ S}. (A.1)

We define simple coroots by

α∨i = 2
αi

〈αi, αi〉
, (A.2)

where above 〈, 〉 is the Euclidean inner product. The Cartan matrix is defined as:

Aij = 〈αi, α∨j 〉 = 2
〈αi, αj〉
〈αj, αj〉

≡ D−1
j 〈αi, αj〉. (A.3)

In practice, we expand the real vector multiplet scalar vev φ in a basis of simple coroots:

φ =
∑
i

φiα
∨
i (A.4)

For some computations, we will find it convenient to expand the simple roots in the

Dynkin basis7, or the basis of fundamental weights, as fundamental weights are canon-

ically dual to simple coroots. To illustrate this point, consider the inner product

〈φ, αi〉 =
∑
j,k

φjAik〈α∨j , wk〉 =
∑
j,k

φjAikδjk =
∑
k

Aikφk. (A.5)

We can apply the same logic above to the scalar product as applied to two coroots:

〈φ, φ〉 =
∑
i,j

φiφj〈α∨i , α∨j 〉 =
∑
i,j

φjD
−1
j Ajiφi ≡

∑
i,j

φjhjiφi, (A.6)

where in the above equation we have defined the metric tensor

(h−1)ij = (A−1)ijDj. (A.7)

Therefore, the vector multiplet scalars for the classical kinetic term can be said to be

in the (canonical dual of the) Dynkin basis when the quadratic form is given by the

inverse of the Lie algebra metric tensor (A.7).

7Note that the rows of the Cartan matrix A are the simple roots in the Dynkin basis.
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A.2 Changing from Dynkin to orthogonal basis

In some cases, we find it more convenient to work in the orthogonal basis. Therefore,

for reference we derive the linear transformation necessary to express the coroot φ in

the orthogonal basis, given an expansion of φ in terms of simple coroots α∨i .

To begin, recall that the Dynkin basis is canonically dual to the basis of simple

coroots in the following sense

〈α∨i , wj〉 = δij, (A.8)

In matrix form, the above equation reads

AΩt = I, (A.9)

where we define Ω through the following relation:

Ω = (AAt)−1A. (A.10)

Note that the rows of the above matrix Ω are the fundamental weights, where Ω can

be viewed as a change of basis matrix from the orthogonal basis to the Dynkin basis:

wi =
∑
j

Ωij êj. (A.11)

The matrix Ω will be useful in the following derivation.

In order to determine the correct change of basis for φ, we will first convert the

simple roots αi to the orthogonal basis, using the Dynkin basis as an intermediate step.

Expanding αi, we find

αi =
∑
j

Aijwj =
∑
j,k

AijΩjkek, (A.12)

where êk is a standard basis vector. By inverting Ω and exploiting the canonical pairing

between simple coroots and fundamental weights, we notice that we may write:

〈φ, êk〉 =
∑
i,l

(Ω−1)kl 〈φiα∨i , wl〉 =
∑
i

(Ω−1)kiφi, (A.13)

where Ω−1 is the pseudo-inverse of Ω. Therefore, the inner product between φ and a

simple root must satisfy the following equation:

〈φ, αi〉 =
∑
k

(∑
j

AijΩjk

)(∑
l

(Ω−1)klφl

)
=
∑
j

Aijφj. (A.14)
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In the above equation, we identify

Ãik =
∑
j

AijΩjk (A.15)

as the components of the matrix whose rows are the simple roots in the orthogonal

basis. Therefore, it must be the case that the coroot is expressed in an orthogonal

basis as

φi =
∑
j

Ωijφ̃j. (A.16)

In practice, we adopt the notation

ai ≡ φ̃i (A.17)

to be consistent with commonly used notation in the literature.

A.3 Lengths of weights, index of a representation

In this section, we expand roots and weights in a basis of simple roots αi=1,...,rG (this

basis is referred to as the α-basis in [43]). The length8 l(e) of a root e =
∑

i eiαi is

defined as follows:

l(e) =
∑
i

ei. (A.18)

By linearity, we can extend this notion to weights w =
∑

iwiαi:

l(w) =
∑
i

wi. (A.19)

The lengths of the weights of an irreducible representation R(w+) with highest weight

w+ are related to the quadratic Dynkin index c
(2)

R(w+) (also referred to as simply ‘the

index’ of the representation R(w+)) [44]:

c
(2)

R(w+) =
dim(R(w+))

dim(G)
〈w+, w+ + 2δ〉 = C(G)

∑
w∈R(w+)

l(w)2, (A.20)

where in the above expression

δ =
1

2

∑
e∈R+

e. (A.21)

8In [43], the ‘length’ of a root or weight is referred to as the ‘height’.
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For classical Lie algebras G, the normalization constant C(G) is chosen so that the

index of the fundamental representation is equal to 1:

C(G) =
1∑

w∈F l(w)2
. (A.22)

However, a different normalization is chosen for the exceptional Lie algebras.

B Bound on Matter Representation Dimension

In our classification, we assume that the dimension of the largest matter representation

(or half-dimension, in the case of pseudoreal representations) is no larger than the

dimension of the adjoint representation. In this section, we explain why this assumption

is implied by Conjecture 3, which asserts that the prepotential must be positive on the

entire fundamental Weyl chamber.

There exists a point φ∗ in the fundamental Weyl chamber where the inner products

e · φ,w · φ are equal to the lengths of the corresponding root or weight. This can be

understood as follows. In a basis of simple roots, the inner product e · φ may be

expressed as:

e · φ =
∑
i,j

eiφj〈αi, α∨j 〉 =
∑
i,j

eiφjAij, (B.1)

and a similar expression holds for w · φ. The conditions placed on φ parametrizing the

fundamental Weyl chamber C(S) thus translate to the following inequalities:∑
j

Aijφj ≥ 0. (B.2)

Evidently, it is always possible to find a solution φ∗ to the equation∑
j

Aijφj = 1 for all i, (B.3)

since the only constraint on the coefficients
∑

j Aijφj is that they be non-negative, and

a Cartan matrix is by definition nonsingular. At this point φ∗, we find

e · φ∗ =
∑
j

ej = l(e), w · φ∗ =
∑
j

wj = l(w). (B.4)

Therefore, at infinite coupling 1/g2
0 = 0, the prepotential evaluated at this point φ∗ is

proportional to

6F(φ∗) =
∑
e∈roots

|l(e)|3 −
∑
w∈Rf

|l(w)|3 (B.5)
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and the classical CS term ∑
w∈F

(w · φ∗)3 =
∑
w∈F

l(w)3 = 0. (B.6)

We claim that the difference of sums (B.5) is negative if

c
(2)
adj < c

(2)
Rf
. (B.7)

(In the case of pseudoreal representations, we replace c
(2)
Rf

with 1
2
c

(2)
Rf

.) To see this,

assume that the above inequality holds, and observe that l(w) ∈ 1
2
Z for any weight w,

and therefore up to an overall constant, the quadratic indices

c
(2)
Rf

=
∑
w∈Rf

n2
w, c

(2)
adj =

∑
e∈adj

n2
e, (B.8)

where nw ∈ Z≥0. We therefore find that the quadratic indices are proportional to sums

of squares of positive integers. If the above sums satisfy the inequality (B.7), then it

must also be true that the sums of cubes n3
w, n

3
e satisfy the same inequality. But the

sums of the cubes of these positive integers are proportional to the sums of the cubes

of the lengths. Therefore, it follows that (B.5) must be negative, which violates the

condition imposed by Conjecture 3 at the point φ∗.

One can verify that dim(Rf ) > dim(adj) implies that c
(2)
Rf

> c
(2)
adj, which justifies

the exclusion of matter representations with dimension greater than that of the adjoint

from our classification.

C Convergence of S5 partition function

In this appendix we collect several formulas for the expression of the S5 partition

function evaluated using localization. The main result here is that the convergence of

the perturbative contribution to the S5 partition function is equal to the demand that

the perturbative prepotential be positive on the entire Coulomb branch. We can use this

to give another criterion for the UV completeness of 5d gauge theories, which appears

to coincide with the other criteria presented in this article, at least in all examples

we have checked. This is summarized in the conjectures in section 3.2, particularly

conjecture 3.

C.1 The 5d partition function

The partition function can be represented by the path integral on S5, which in turn

can be evaluated using localization; this partition function receives contributions from
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a perturbative part and a non-perturbative part, where some aspects regarding the

latter are still conjectural [45–52]. The general form is suspected to be:

ZS5

=

∫
ZpertZ

3
inst, (C.1)

where Zpert is the perturbative part and Zinst is the non-perturbative contribution. The

latter arises from contact instantons [46, 52], which fill the S1 in the Hopf-fibration

realization of S5 as an S1 fibered over CP2. They are localized at three points on CP2

hence the power in the integral. In general they can be expanded in a power series in

q = e
− 16π3r

g2
YM :

Zinst = 1 +O

(
e
− 16π3r

g2
YM

)
, (C.2)

where r/g2
YM is the ratio of the radius of S5 to the coupling constant.

Let us first ignore the instanton contribution, and consider only the perturbative

part. We shall use the expression for it given in [46, 47]. The full expression is then:

Z =
1

|W |

∫
Cartan

dσe
− 4π3r

g2
YM

trFσ
2+πκ

3
trFσ

3

detadj

(
sin(iπσ)e

1
2
f(iσ)

)
(C.3)

×
∏
I

detRI

(
(cos(iπσ))

1
4 e−

1
4
f( 1

2
−iσ)− 1

4
f( 1

2
+iσ)
)

+ instanton contributions,

where |W | is the size of the Weyl group. Also, κ is the Chern-Simons level (if present),

and f is a function defined by:

f(y) ≡ iπy3

3
+ y2 log(1− e−2πiy) +

iy

π
Li2(e−2πiy) +

1

2π2
Li3(e−2πiy)− ζ(3)

2π2
(C.4)

The integral is done over the Cartan subalgebra and the notation trR, detR stands

for the trace and determinant in the representation R, where F denote the fundamental

represetnation and adj denotes the adjoint representation.

Ignoring the instanton contributions, the above integral can be recast in the fol-

lowing form [53]:

Z =
1

|W |

∫
Cartan

dσe−F (σ) (C.5)

where:

F (σ) =
4π3r

g2
YM

trFσ
2 +

πk

3
trFσ

3 + tradjFV (σ) +
∑
I

trRI
FH(σ) (C.6)

– 58 –



We will be concerned with the conditions needed for the convergence of the integral

(C.5), for which we will need the asymptotic expansion of F (σ), which is:

FV (σ) ≈ π

6
|σ|3 − π|σ| (C.7)

FH(σ) ≈ −π
6
|σ|3 − π

8
|σ| (C.8)

One can see that the leading contributions are of order σ3, where the contribution

of the gauge multiplets generally makes the integral converge while the ones from

matter and Chern-Simons terms make it diverge. Thus, the convergence of the integral

constrains the number and representations of matter fields and the Chern-Simons level.

Hence, it is tempting to conjecture that convergence of the integral may be related to

the existence of a non-trivial fixed point.

In the σ → ∞ limit the resulting expression for F (σ) can be identified with the

gauge theory prepotential [54]. This allows us to recast the condition as follows:

σ →∞⇒ F (σ)→∞ (C.9)

where F is now the prepotential.

Thus we see that the convergence of the perturbative part of the partition function

is equivalent to the demand that the perturbative prepotential be everywhere positive.

We stress here that the above (piecewise) expression F for the prepotential is naive

because in general a different prepotential is needed for each effective description of

the theory valid in a given subset of the naive Coulomb branch. In the absence of

instanton corrections, we expect that F will not have a well-defined global expression

valid on all of C. In fact, we have encountered numerous examples in our classification

program where the prepotential associated to some gauge theory description is only

valid on a particular subset of the naive Coulomb branch. Nevertheless, this criterion

(i.e. Conjecture 3) leads to physically sensible results consistent with the predictions

of our other conjectures.

An interesting case is when the prepotential vanishes along one direction but is

positive along all others. In that case the perturbative part of the partition function

may diverges by the linear term when gYM → ∞, but should converge for every other

value. These cases are then marginal, and in all examples we have checked correspond

to 6d lifting theories.

Thus we see that examining the perturbative part of the partition function, we are

naturally led to a criterion for the existence of a UV fixed point for a 5d gauge theories.

In all the examples we have checked, this criterion gives identical results as the other

criteria introduced in this article.
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Before ending we wish to discuss the physical aspects of this criterion as well as

possible generalizations. A physical argument for this criterion is that the partition

function is a characteristic of the theory and must be a finite number so it seems

strange for it to diverge. It is known that in some cases partition functions diverges.

For instance the index of some 3d theories, the so called ‘bad’ by [55], diverges. In that

case it is due to monopole operators going below the unitary bound, and is believed

to signal the appearance of singlets. When the S5 partition function diverges it is

expected that likewise there should be a physical explanation for this.

A natural physical explanation then is that the theory needs a UV completion

and thus additional degrees of freedom that could curve the divergence. This is also

supported as this divergence is of UV type, that is in the limit of infinite Coulomb vev.

There are however several arguments one can raise against this. One such argument

is that we only look at part of the expression since we ignored the instanton correc-

tions. So, first, it is possible that even if the perturbative part converges, the instanton

contribution diverges. This just means that this condition is not sufficient, but that

might be so even when the full partition function converges. It is still reasonable that

this is a necessary condition.

However, it is possible that both the perturbative part and some of the instanton

contributions diverges, but their sum converges. This seems extremely unlikely since

the perturbative part and instanton contributions have different dependence on the

coupling constant, which is a mass parameter in 5d controlling the instanton masses.

So even if such a cancellation occurs changing the value of the coupling constant should

destroy it and leads to a divergence. Since the partition function must converge for

every value of gYM, it still seems to be a good necessary condition.

Special attention should be given to the marginal case when the coefficient of the

σ3 term vanishes exactly along some direction. In that case the partition function only

diverges when gYM → ∞ so one cannot rule out that the full partition function also

converges for gYM →∞ where the divergence is canceled by instanton contributions.

Another issue that can be raised is how well can we trust the result for the S5

partition function particularly in the gYM → ∞ limit. In other words, how well does

the gauge theory partition function captures properties of the underlying SCFT when

it exists. It is natural to expect that the 5d SCFT should have a physical object that

can be identified as its S5 partition functions. This will be a function of various mass

deformation, identified with flavor masses and coupling constants in low-energy gauge

theory descriptions. The masses in turn can be defined as central charges in the SUSY

algebra. Physically we expect this object to be finite for any value of the masses. If we

identify this object with the gauge theory partition function then a physical argument

for its convergence naturally arises. In that lights, the agreement of this criterion with
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the others seem to imply that the localized partition function of the gauge theory

captures some aspects of the partition function of the underlying SCFT.

Finally we comment on possible generalizations of this criterion. The most obvious

one is to generalize to the complete partition function by including the non-perturbative

part. As we explained when we discussed the exotic cases, it is expected that there

will be some non-perturbative corrections to the perturbative prepotential. Given the

identity of the large value behavior of the exponent of the integrand with the pertur-

bative prepotential, and the existence of the non-perturbative instanton corrections,

it is tempting to suspect that the latter may give as a window into non-perturbative

corrections to the perturbative prepotential. We also only considered the round sphere,

while there are generalizations of all the expressions also to the squashed sphere. It

might be interesting to explore the generalization to the squashed sphere. It may also

be interesting to better understand the relation between the gauge theory partition

function and that of the underlying SCFT. We reserve further study of all these issues

to future work.
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1 Introduction

The discovery of superconformal theories (SCFTs) in six and five dimensions has been one

of the most surprising results emerging from string theory in the past few decades. There

are two types of 6d SCFTs, both of which are classified in terms of singular geometries: N =
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(2, 0) theories [1] and N = (1, 0) theories [2–4]. Given the surprising effectiveness of geome-

try in describing 6d SCFTs, a natural next step is to attempt to classify 5d SCFTs in terms

of singular geometries. In some ways, 5d SCFTs are more rigid as there is only a single type

of 5d SCFT corresponding to the 5d N = 1 (i.e. eight supercharges) superconformal alge-

bra. Many examples of 5d SCFTs have been realized in string theory using brane probes [5],

M-theory on local Calabi-Yau 3-folds [6–8], and type IIB (p, q) 5-brane webs [9–12].

The classification of 6d N = (1, 0) theories led to a picture involving generalized

‘quiver-like’ theories whose structures could by and large be anticipated from field theoretic

reasoning. There are of course exceptions to this idea and explicit geometric constructions

in F-theory clarified which possible exceptions arise that evade field theoretic analysis [2, 3].

Similarly, in the 5d case, one might expect field theoretic reasoning to be a powerful, albeit

incomplete guide. Indeed, as spearheaded in [8] it has been clear for a long time that field

theoretic tools combined with the constraints of supersymmetry provide an unexpectedly

powerful method for deducing the existence of interacting UV fixed points. More recently it

was found in [13] that relaxing some of the constraints in [8] can resolve the conflict between

the necessity of assumptions in [8] with some known stringy constructions. However, it is

unclear whether or not there are additional conditions needed to guarantee the existence

of gauge theories as consistent 5d SCFTs. Moreover, there are known cases in which a 5d

SCFT is not a gauge theory (for example, M-theory on a local P2 embedded in a Calabi-Yau

3-fold).1 A reasonable follow-up to the field theoretic approach, then, is to try to check if the

necessary gauge theoretic consistency conditions described in [13] are in fact also sufficient,

by using other string constructions to engineer the same theories. The main aim of this

paper is to use geometric constructions of 5d SCFTs, realized as M-theory compactified on

local Calabi-Yau (CY) 3-fold (and cross checked with dual constructions involving (p, q)

5-brane webs), to devise a classification scheme for 5d SCFTs. As a byproduct of our

efforts, we are led to either validate or exclude various candidate 5d SCFTs predicted by

the perturbative gauge theoretic analysis.

The basic mathematical setup leading to 5d SCFTs from M-theory on CY 3-folds in-

volves studying how all compact 4-cycles (compact complex surfaces) inside a non-compact

3-fold can be shrunk to a point at a finite distance in moduli space; we call CY 3-folds

engineering 5d SCFTs in this manner ‘shrinkable’ 3-folds. This geometric picture can be

schematically represented by a graph whose nodes are 4-cycles (surfaces) and whose edges

denote the resulting intersecting 2-cycles (curves). We note that a systematic study of the

consistency conditions needed to construct such geometries has not been undertaken in the

mathematics literature. Starting from a collapsed set of 4-cycles, the condition that one

can resolve the singularities and thereby bring the 4-cycles to finite volume restricts the

admissible types of Kähler surfaces (i.e. the nodes of the graph). We call the number of

nodes of such a graph the rank of the 5d SCFT. In particular, we show that the nodes of

the graph must be rational or ruled surfaces (possibly blown up at a positive number of

1Despite the fact that these cases do not admit a Lagrangian description, they can nevertheless be

obtained from a gauge theory by passing through phases where some non-perturbative degrees of freedom

become massless.
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Figure 1. Graphical representation of a rank r Kähler surface S = ∪Si ⊂ X embedded in
local Calabi-Yau 3-fold X. The nodes of the graph correspond to 4-cycles Si, while the edges
Ci,i+1 = Si ∩ Si+1 correspond to 2-cycles along which the nodes intersect.

points)2 in the rank 2 case, and further conjecture this to be true for arbitrary rank. The

Calabi-Yau condition and the requirement of positive volumes place further restrictions

on the allowed intersections of the surfaces (i.e. the edges of the graph; see figure 1). We

thus devise a set of necessary critieria which must be satisfied for a 3-fold to engineer a

5d SCFT and conjecture that these criteria are sufficient to guarantee the existence of a

5d SCFT; this conjecture is supported by various cross checks using (p, q) 5-brane webs.

Furthermore, we conjecture that all 5d SCFTs can be realized in M-theory on CY 3-folds

satisfying these criteria. Similar to the 6d case, where F-theory compactified on elliptic

3-folds was used to classify N = (1, 0) theories and it was subsequently found that for a few

exotic cases frozen singularities are necessary to realize O7+ planes in F-theory [14, 15], we

find that in the M-theory case it is also necessary to include frozen singularities to obtain

a complete classification of 5d SCFTs.

A complete classification of such CY 3-folds appears to be a rather daunting task.

For example, it is unknown whether or not the list of possible 5d SCFTs is finite for a

given rank. Luckily, it turns out that the rank 2 case is finite, permitting an exhaustive

classification of physically distinct SCFTs.

By classifying rank 2 SCFTs in terms of Calabi-Yau geometry, we learn that all rank

2 gauge theories predicted in [13], except for one family, are realized.3 Additionally, we are

also able to pinpoint the non-perturbative physics missing in the gauge theoretic approach

of [13] responsible for excluding this family of SCFTs. Furthermore, the geometric ap-

proach allows us to identify additional non-Lagrangian SCFTs whose existence motivates

the existence of dual (p, q) 5-brane web configurations.

2Rational and ruled surfaces are equivalent to (respectively) P2 and ruled surfaces over genus g curves

(which we argue can be restricted to g = 0)—see section 3.5.1 for additional details.
3We conjecture that all SCFTs admit at least one Coulomb branch parameter at the CFT point. The

missing family which is represented by SU(3) at Chern-Simons level k = 8 has no Coulomb branch parameter

at the would-be CFT point and that is why we rule it out. This family would have led to a putative CFT

which allows a Coulomb branch deformation only after a mass deformation (i.e. turning on 1/g2).

– 3 –
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Given the significant practical challenges presented by this classification program, it is

natural to ask if the insight we have gained from the rank 2 case can be used to streamline

the classification of higher rank cases. Indeed, a careful examination of the list of rank 2

theories reveals a beautifully simple picture: rank 2 SCFTs in 5d can be organized into four

distinct families, related and interconnected by RG flows triggered by mass deformations —

see figure 16. Each family of 5d SCFTs has a parent 6d SCFT, where the parent 6d SCFT is

related to a 5d descendant by circle compactification, up to a choice of automorphism twist

(see [16] for work on classifying such automorphism twists, and see [17] for a discussion

of additional discrete data characterizing circle compactifications of 6d SCFTs.) Thus the

rank 2 classification could have been anticipated entirely from the 6d perspective! This

result echoes a well-known property of rank 1 SCFTs: rank 1 5d SCFTs belong to a single

family which descends from the 6d E-string theory via circle compactification.

We thus conjecture that all 5d SCFTs arise from 6d SCFTs compactified on a circle,

possibly up to an automorphism twist. More precisely, we anticipate that all 5d SCFTs can

be organized into distinct families, each of which arises from a 6d theory. For a fixed rank

in 5d, the possible 6d SCFT parents are rather limited. For example (ignoring the possible

automorphism twist), the 6d SCFTs leading to rank r 5d SCFTs will have r−k dimensional

tensor branches with rank k gauge algebra. This suggests a practical method to classify 5d

SCFT families starting with the 6d classification: compactifying a 6d SCFT on a circle pro-

duces a 5d theory with a Kaluza Klein (KK) tower of states. We call such theories ‘5d KK

theories’; these theories are in some sense analogous to 6d little string theories. To obtain

non-trivial 5d SCFTs from 5d KK theories we need to turn on holonomies suitably tuned to

trigger an RG flow to a nontrivial 5d SCFT in the infrared. Aspects of the phase structure

of 5d theories arising from circle compactifications of 6d SCFTs were analyzed in [18].

The organization of this paper is as follows. In section 2 we discuss the preliminaries

of 5d SCFTs, their effective gauge theory descriptions on the Coulomb branch, and their

realizations in M-theory. In section 3 we discuss the mathematics of shrinkable 3-folds and

explain the basic approach of our geometric classification program. In section 4 we repeat

the classification of rank 1 5d SCFTs and extend the same methods to the rank 2 case. We

also discuss the connection to 6d N = (1, 0) SCFTs. Some mathematical results essential

for the rank 2 classification are collected in the appendices: appendix A contains an explicit

description of the Mori cones of blowups of Hirzebruch surfaces; appendix B contains some

numerical bounds constraining rank 2 shrinkable 3-folds; finally, appendix C contains a de-

tailed discussion of some smoothness assumptions which simplify the classification program.

2 Effective description of 5d SCFTs

In this section we discuss some of the preliminaries that set the stage for the classification

of 5d SCFTs later in this paper. The following discussion involves two perspectives on 5d

N = 1 theories: the gauge theoretic perspective, and the geometric perspective of M-theory

compactified on a Calabi-Yau 3-fold.

5d superconformal field theories (SCFTs) are strongly interacting systems with no

marginal deformations [19] and no known Lagrangian description at the CFT fixed point.

– 4 –
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In order to study the physics of these conformal theories, one needs to use rather indirect

approaches. 5d SCFTs admit supersymmetric relevant deformations which lead to several

weakly interacting effective descriptions while preserving some amount of supersymmetry.

Surprisingly, these effective descriptions can be powerful tools for studying the dynamics of

the conformal point. There exist some CFT observables which are rigidly protected under

the renormalization group (RG) flow triggered by these deformations. Many BPS quan-

tities are such observables: for example, the spectrum of BPS operators, supersymmetric

partition functions, effective Lagrangians on the Coulomb branch, the Coulomb branch

of moduli space, etc. In particular, BPS observables are protected by supersymmetry and

thus we expect BPS quantities appearing in the effective theories to be a reliable description

of the corresponding observables at the CFT fixed point.

String theory provides many effective descriptions of 5d SCFTs. Multiple D4-brane

systems in Type IIA string theory and (p, q) 5-brane webs in Type IIB string theory

can engineer various 5d SCFTs as singularities. Away from the singularity, when mass

parameters and gauge couplings are turned on, these brane systems often permit a gauge

theory description of the corresponding 5d theories.

5d SCFTs can also be engineered in M-theory: M-theory on a singular non-compact

Calabi-Yau 3-fold is described at long distances by an SCFT living on the five-dimensional

spacetime transverse to the 3-fold. In familiar cases, the Calabi-Yau singularity can be

resolved by means of various Kähler deformations, which correspond to mass and Coulomb

branch deformations in the corresponding gauge theory.

2.1 Gauge theory description

Gauge theories in five dimensions are non-renormalizable and flow to free fixed points at low

energy. As a result, these theories are typically believed to be ‘trivial’ theories. However,

a large class of 5d gauge theories, mostly engineered in string theory, turn out to have

interacting CFT fixed points in the UV [5]. In such cases, 5d gauge theories are rather

interesting since they can provide low energy effective descriptions of the CFT.

In this paper, we focus primarily on gauge theories which have 5d SCFTs as their UV

completions. These theories preserve N = 1 supersymmetry, and their massless field con-

tent consists of vector multiplets with gauge algebra G and hypermultiplets in a representa-

tion R = ⊕Rj of G. These gauge theories might be further specified by topological data k

corresponding to classical Chern-Simons level, as in the case of G = SU(N ≥ 3), or discrete

θ-angle as in the cases G = Sp(N). We can also consider the cases with product gauge

algebra G =
∏

iGi. Once the data G,R, k is fixed, the low energy gauge theory Lagrangian

is uniquely determined by supersymmetry. Our notation for describing 5d gauge theories is

Gk +
∑

j

NRjRj , (2.1)

where Rj is the representation under which the j-th matter hypermultiplet is charged, NRj

is the number of hypermultiplets in the representation Rj .

5d N = 1 gauge theories possesses a rich vacuum structure. The moduli space of

vacua is parametrized by expectation values of various local operators. In particular, we

– 5 –
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are interested in the Coulomb branch of vacua parametrized by vacuum expectation values

of scalar fields φ in the vector multiplets. Here the scalar field φ takes values in the Cartan

subalgebra of the gauge group G. So the dimension of the moduli space of the Coulomb

branch is given by the rank of group G, r = rank(G). By abuse of notation, we will denote

both a scalar field in the vector multiplet and its expectation value by φ from now on.

There are global symmetries acting on the hypermultiplets. The classical Lagrangian

has global symmetry algebra F rotating the perturbative hypermultiplets and also a topo-

logical U(1)I symmetry for each gauge group. The objects charged under the U(1)I are

non-perturbative particles called ‘instantons’. Surprisingly, this classical global symmetry

is often enhanced in the CFT fixed point by non-perturbative instanton dynamics [5, 7].

The flavor symmetry of the perturbative hypermultiplets can combine with the topological

U(1)I instanton symmetry and enhance to an even larger symmetry algebra in the UV

CFT. One can turn on mass parameters mi associated to the global symmetry. Doing so

breaks some of the global symmetry. In particular, the mass deformation with parameter

g−2 along the U(1)I instanton symmetry leads to a gauge theory description with gauge

coupling g at low energy.

At a generic point in the Coulomb branch, the gauge symmetry G is broken to the

maximal torus U(1)r. Thus the low energy dynamics on the Coulomb branch can be

effectively described by abelian gauge theories. The low energy abelian action is determined

by a prepotential F . The prepotential is 1-loop exact and the full quantum result is a cubic

polynomial of the vector multiplet scalar φ and mass parameters mj , given by [8, 20]:

F =
1

2g2
hijφiφj +

k

6
dijkφiφjφk +

1

12




∑

e∈root
|e · φ|2 −

∑

j

∑

w∈Rj

|w · φ+mi|3


 , (2.2)

where by abuse of notation Rj denotes the set of weights of the j-th hypermultiplet rep-

resentation of G, hij = Tr(TiTj), and dijk = 1
2TrF(Ti{Tj , Tk}) with F in the fundamental

representation. The first two terms in the prepotential are from the classical Lagrangian

and the last two terms are 1-loop corrections coming from integrating out charged fermions

in the Coulomb branch. We remark that the prepotential may have different values in the

different sub-chambers (or phases) of the Coulomb branch due to the absolute values in

the 1-loop contributions.

The 1-loop correction to the prepotential renormalizes the gauge coupling. The effec-

tive coupling in the Coulomb branch is simply given by a second derivative of the quantum

prepotential which also fixes the exact metric on the Coulomb branch:

(τeff)ij = (g−2
eff )ij = ∂i∂jF , ds2 = (τeff)ijdφidφj . (2.3)

Interestingly, the exact spectrum of magnetic monopoles on the Coulomb branch can be

easily obtained from the quantum prepotential. Since monopoles are magnetically dual to

electric gauge bosons, tensions of magnetic monopole strings can be computed as

φDi = ∂iF , i = 1, · · · r . (2.4)

– 6 –
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One can also compute Chern-Simons couplings:

kijk = ∂i∂j∂kF . (2.5)

Therefore, we can use F to exactly compute some quantum observables such as the

Coulomb branch metric and monopole spectrum.

In [8, 13], the above supersymmetry protected data is used to attempt a classification

of possible 5d SCFTs admitting low energy gauge theory descriptions. The main idea in

these classification programs is that the quantum metric on the Coulomb branch should

be positive semi-definite in the CFT limit, as required by unitarity. In [8], the positivity

condition of the metric was imposed throughout the ‘perturbative’ Coulomb branch and

all sensible gauge theories were subsequently identified using this constraint. In this clas-

sification, the ‘perturbative’ Coulomb branch is determined by forcing only perturbative

particles to have positive masses. Under this condition, the number and type of hyper-

multiplets are strictly constrained and quiver type gauge theories are ruled out; see [8] for

details. We refer to this classification as the ‘IMS classification’.

However, it was pointed out later works [10, 12, 21–23] that string theory can engineer

many 5d gauge theories with non-trivial CFT fixed points not included among the theories

in the IMS classification. It turns out that the condition of metric positivity throughout

the entire perturbative Coulomb branch is too strong [13] and unnecessarily excludes many

non-trivial 5d gauge theories. This suggests that the IMS classification is incomplete, and

the gauge theories exceeding the IMS bounds lead us to revisit the problem of classifying

5d SCFTs.

Let us briefly review the classification of [13]. One of the main results of this analysis

is the observation that the ‘perturbative’ Coulomb branch receives quantum corrections by

light non-perturbative states [10]. It is possible that some of non-perturbative states can

become massless somewhere in the perturbative Coulomb branch. These hyperplanes in

the Coulomb branch where these light states become massless can be thought of as ‘non-

perturbative’ walls. Beyond such walls, the perturbative Coulomb branch breaks down.

One way to see this is to note that the signature of the quantum metric on the Coulomb

branch changes beyond these non-perturbative walls, which implies the metric cannot be

trusted in these regions. However, the classification in [8] imposes metric positivity on the

whole perturbative Coulomb branch, even beyond non-perturbative walls. The result is

that some theories are excluded because of the unreliability of the metric in these regions,

and this leads to an incomplete classification. In order to obtain a complete classification,

metric positivity should be applied only on the ‘physical’ Coulomb branch, which can be

computed by accounting for restrictions introduced by non-perturbative states.

In general, it is difficult to identify the correct physical Coulomb branch after taking

into account non-perturbative effects since this necessarily involves studying the full non-

perturbative spectrum. In particular, it is not easy to analyze the spectrum of gauge theory

instantons. Only when we know a precise UV completion of the instanton moduli space,

such as the ADHM construction, can we compute the exact spectrum using localization.

For most gauge theories, such a convenient construction of the instanton moduli space is

lacking.
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Fortunately, the perturbative prepotential contains part of the exact spectrum of non-

perturbative states. As noted in (2.4), the full monopole spectrum can be obtained from

the prepotential. We can use this information to identify some of the non-perturbative

walls in the perturbative Coulomb branch. By relaxing the metric positivity constraint to

apply only to the region interior to such non-perturbative walls, it was conjectured in [13]

that all gauge theories having interacting CFT fixed points satisfy the metric positivity

condition in the sub-locus of Coulomb branch where perturbative particles and monopole

strings have positive masses. In [13], it was also shown that a large class of known 5d gauge

theories satisfy this criterion. It may be true that all the known 5d gauge theories having

5d SCFT fixed points satisfy this refined condition.

In addition, there are two more conjectures in [13] used to carry out the classification

of 5d gauge theories with simple gauge algebras. The first conjecture is that if all pertur-

bative particles and monopoles have positive masses somewhere in the Coulomb branch,

the gauge theory has a UV CFT fixed point. The second conjecture is that perturbative

prepotentials of all gauge theories with UV CFT fixed points are positive everywhere in the

perturbative Coulomb branch. Note that the first conjecture is not sufficient to guarantee

that all instanton particles have positive mass and also that the metric is positive in the

same region. So this is simply a necessary condition. We will see later that certain theories

predicted by this approach must be excluded because some non-perturbative particles ac-

quire negative masses in the CFT limit. The second conjecture is based on the convergence

of the 1-loop sphere partition function of 5d CFTs, but there is neither physical nor math-

ematical motivation for this conjecture beyond its practical implications. Using these two

conjectures, non-trivial gauge theories with single gauge node were fully classified in [13].

This classification includes all known single gauge node theories and additionally predicts

a large number of new gauge theories.

In this paper, we construct rank 1 and rank 2 CFTs using Calabi-Yau geometry. Rank

1 gauge theories arising from SCFTs were classified in [5, 6, 8, 24]; these theories have

gauge algebra SU(2) with NF ≤ 7. Geometrically, the rank 1 SCFTs can be engineered by

del Pezzo surfaces embedded in a non-compact 3-fold. The families of rank 2 gauge theories

predicted by the classification of [13] are displayed in table 1. The UV completions of the

theories shown in table 1 are all expected to be 6d theories, rather than 5d SCFTs; on

the other hand, their descendants obtained by mass deformations are expected to have 5d

CFT fixed points. Many of these theories in table 1 are new theories, for example SU(3)

with (NF, |k|) = (6, 4), (3, 132 ), (0, 9) in (a).

One of the purposes of this paper is to check if the new rank 2 CFTs predicted in [13]

(or descendants of theories in table 1) can be constructed geometrically. We will see that,

surprisingly, almost all new theories in table 1 admit geometric constructions, therefore

their descendants indeed have interacting CFT fixed points. However, some theories do not

correspond to geometries in their conformal limits due to subtle non-perturbative effects.

Therefore, the geometric constructions of this paper indicate that the criteria described

in [13] require additional non-perturbative corrections in order to be complete. We hope

to revisit the field theoretic approach of [13] in the near future with the benefit of our

improved understanding.
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NSym NF |k|
1 0 3

2

1 1 0

0 10 0

0 9 3
2

0 6 4

0 3 13
2

0 0 9

(a) Marginal SU(3) theories with CS level k,
NSym symmetric and NF fundamental hy-
permultiplets.

NAS NF

3 0

2 4

1 8

0 10

(b) Marginal Sp(2) gauge theories with NAS

anti-symmetric, NF fundamental hypermul-
tiplets. The theory with NAS = 3 can have
θ = 0,π.

NF

6

(c) A marginal G2 gauge theory with NF fun-
damental matters.

Table 1. Rank 2 gauge theories.

2.2 M-theory compactifications

String compactifications are an extraordinarily useful tool for realizing local, non-

perturbative models of gauge sector physics in terms of brane dynamics. Consider in

particular M-theory on a non-compact singular Calabi Yau variety Y , which is conjectured

to be described at low energies by a 5d N = 1 SCFT. We are specifically interested in

studying the Coulomb branch deformations of these 5d SCFTs. The heart of this analysis

is the correspondence between the Coulomb branch C and the extended Kähler cone K(Y )

of the singular threefold Y [20]:

C = K(Y ). (2.6)

The above correspondence is made more precise by establishing a dictionary between

the geometry of the threefold and the BPS spectrum of the associated 5d theory, which we

now describe in detail. Consider a smooth non-compact 3-fold X. The Kähler metric of

X depends on h1,1(X) moduli controlling the sizes of complex p cycles in X. In order to

decouple gravitational interactions, it is necessary to scale the volume of X to be infinitely

large while keeping the volumes of all 2- and 4-cycles at finite size; this has the effect of

sending the 5d Planck mass to infinity. Given a basis Di ∈ H1,1(X), one may therefore

express the Kähler form J as the linear combination

J = φiDi, i = 1, . . . , h1,1(X), (2.7)

where the Kähler moduli φi=1,...,r associated to (cohomology classes dual to) compact

4-cycles Di = Si are identified with Coulomb branch moduli, while the Kähler moduli

φr+j,...,r+M = mj=1,...,M associated to non-compact 4-cycles Dr+j = Nj are interpreted

as mass parameters of the 5d theory. To align the discussion with the 5d field theoretic
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interpretation, we find it useful to partition the Kähler moduli into r Coulomb branch

parameters and M mass parameters:

h1,1(X) = r +M. (2.8)

Note that when the associated 5d field theory admits a description as a gauge theory, r

coincides with the rank of the gauge group.

The BPS states of the 5d theory include electric particles and (dual) magnetic strings.

Geometrically these states correspond to M2 branes wrapping holomorphic 2-cycles and

magnetic dual M5 branes wrapping holomorphic 4-cycles, and the masses and tensions

of these BPS degrees of freedom are proportional to the volumes of the corresponding

holomorphic cycles. At a generic point φ ∈ C the spectrum of BPS states is massive,

and this is reflected by the fact that the 2- and 4-cycles of Y have finite volume. Since

the conformal point φ = 0 is characterized by the appearance of interacting massless and

tensionless degrees of freedom, we interpret the threefold Y as a singular limit of the smooth

threefold X in which some collection of compact 4-cycles have collapsed to a point. Said

differently, X is a desingularization of Y .

The above discussion suggests that the data of the massive BPS spectrum is encoded

in the geometry of X. Indeed this is the case, the main connection to geometry being the

interpretation of the 5d prepotential (2.2) as the cubic polynomial of triple intersection

numbers of 4-cycles in X:

F = vol(X) =
1

3!

∫

X
J3 =

1

3!
φiφjφk

∫

X
Di ∧Dj ∧Dk. (2.9)

In the previous section, we saw that various data characterizing the massive BPS spectrum

can be expressed as derivatives of F . This data equivalently characterizes the geometry of

X. In particular, the tensions (2.3) of elementary monopole strings are the volumes of the

compact 4-cycles Si:

φDi = ∂iF = vol(Si) =
1

2!

∫

X
J2 ∧ Si, 1 ≤ i ≤ r, (2.10)

the matrix of effective couplings has as its components the volumes of various 2-cycles:

τij = ∂i∂jF = vol(Si ∩ Sj) =

∫

X
J ∧ Si ∧ Sj , 1 ≤ i, j ≤ r, (2.11)

and the effective Chern-Simons couplings kijk are triple intersection numbers:

kijk = ∂i∂j∂kF =

∫

X
Di ∧Dj ∧Dk. (2.12)

The Kähler cone K of the singularity Y can also be specified quite easily; K is simply the

set of all positive Kähler forms (parametrized by the moduli φ):

K(X\Y ) =

{
J = φiDi |

∫

C
J > 0 for all holomorphic curves C ⊂ X

}
. (2.13)
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Thus, it is possible to study Coulomb branch deformations of 5d SCFTs purely in terms

of the geometry of a smooth 3-fold X. Generically there are multiple smooth 3-folds Xi

which share a common singular limit Y , so the extended Kähler cone is simply the closure

of the union of Kähler cones,

K(Y ) = ∪K(Xi\Y ). (2.14)

The extended Kähler cone has the structure of a fan, with pairs of cones separated by

hypersurfaces in the interior of K(Y ). The boundaries of K(Xi\Y ) correspond to loci

where the 3-fold Xi develops a singularity. The interior boundaries are regions where a

holomorphic curve collapses to zero volume and formally develops negative volume in the

adjacent Kähler cone, signaling a flop transition (see section (3.5.1) for further discussion.)

By contrast, the boundaries of K(Y ) are loci where one of the 4-cycles can collapse to a 2-

cycle or a point. The SCFT point is the origin of K(Y ), and corresponds to the singularity

Y which is characterized by a connected union of 4-cycles shrinking to a point.

In some cases the 5d theory associated to a 3-fold X admits a description as a gauge

theory. In such cases, the abelian gauge algebra is H2(X,R)/H2(X,Z) and enhances to a

non-abelian gauge algebra in the singularity Y . The simple coroots of the gauge algebra

correspond to the classes Si ∈ H2(X,Z), whereas the simple roots are generic fibers fj con-

tained inH2(X,Z). More precisely, the W-bosons of the 5d theory correspond to M2-branes

wrapping holomorphic curves fj , and so the Cartan matrix Aij is the matrix of charges

Aij = −
∫

fj

Si. (2.15)

In practice, we work in an algebro-geometric setting in which volumes of holomorphic

cycles can be computed as intersection products. Thus the volumes of 2-cycles Ci ⊂
H2(X,Z) and 4-cycles Si ⊂ H4(X,Z) are expressed in terms of the intersection products of

numerical classes of (resp.) complex curves [C] and surfaces [D]. That is, vol(C) = (J ·[C])X
and vol(S) = (J ·J ·Si)X . We abuse notation and use the same symbols to denote p-cycles,

their homology classes, and their numerical equivalence classes whenever the context is

clear.

3 Classification program

3.1 Physical equivalence classes of 3-folds

In this section we propose a classification of CY 3-folds defining 5d SCFTs via M-theory

compactification. One way to approach this problem is to study singular 3-folds for which

there exist desingularizations that preserve the Calabi-Yau condition (i.e. crepant resolu-

tions.) However, the problem of classifying singular 3-folds admitting crepant resolutions

is notoriously difficult. Rather than attempting to classify singularities, we instead classify

physical equivalence classes of singularities. We define a pair of 3-folds to be physically

equivalent (i.e. leading to the same SCFT, up to decoupled sectors) if they are related by

a finite change in Kähler and complex parameters. There is a conjectural aspect to this

definition which we now clarify.
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It is immediate from the above definition that normalizable Kähler and complex defor-

mations do not change the physical equivalence class of a 3-fold, since these deformations

do not change the singular limit (and hence do not change the SCFT). However, we also

find it useful to identify 3-folds that differ by non-dynamical large complex deformations.

While the singular limits of such 3-folds are not identical, we claim they are nevertheless

closely related in that their SCFTs differ at most by decoupled free states. As we will see,

the notion of physical equivalence dramatically simplifies the problem of classification.

3.2 Shrinkable 3-folds

In this section we specify the necessary criteria a smooth 3-fold must satisfy in order to

define a 5d SCFT. Note that we assume all 5d SCFTs have a maximal Coulomb branch,

meaning that there exists a phase in which the 5d theory has no dynamical massless

hypermultiplets, possibly after turning on some mass parameters. Geometrically this means

that we assume there exists a smooth 3-fold which has no normalizable (dynamical) complex

structure deformations. The geometry of such a 3-fold is thus controlled by three types

of parameters: normalizable Kähler (i.e. Coulomb branch) parameters, non-normalizable

Kähler (i.e. mass) parameters, and non-dynamical non-normalizable complex structure

deformation parameters (see section 3.5 for an example).

Before spelling out the necessary criteria, we recall the key features of the geometries

which are the subject of our analysis. We are interested in smooth, non-compact CY 3-

folds X containing a finite number of compact 4-cycles Si and non-compact 4-cycles Nj .

As discussed in the previous section the number of independent compact 4-cycles is equal

to the number of Coulomb branch parameters, while the number of mass parameters is

identified with the number of non-normalizable Kähler deformations. The 4-cycles Si ⊂ X

are irreducible projective algebraic surfaces, hence Kähler. Moreover, X also contains

compact 2-cycles which can either be isolated or part of a family of compact 2-cycles

belonging to one of the 4-cycles.

From the physics perspective the natural condition for CY 3-folds to lead to SCFTs is

that we can tune non-normalizable Kähler parameters (mass parameters) so that at a finite

distance in normalizable Kähler moduli space we can reach a singular CY 3-fold which has

no finite volume cycles or surfaces. However, formulating this in algebro-geometric terms

is not simple. Instead we formulate it in a somewhat different way which we believe is

equivalent to this. Namely, in order for a 3-fold X to define a 5d SCFT, X must satisfy

the property of being shrinkable, which we define below:

Definition. Let X be a smooth CY 3-fold modeled locally as the neighborhood of a

connected union of compact Kähler surfaces S = ∪Si. We say X is shrinkable if there

exists an intersecting (possibly empty) union of non-compact surfaces N = ∪Nj and a

limit Y of Kähler metrics such that:

1. S (and all curves C ⊂ S) have zero volume in Y ;

2. Y is at finite distance from a metric X0 for which N has zero volume while S has

positive volume.
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By abuse of terminology, we say the surface S is shrinkable if S is contained in a shrinkable

3-fold X as a maximal compact algebraic surface.

Let us now translate the above definition of shrinkability into a set of necessary geo-

metric conditions. We consider first the limit where all non-normalizable Kähler moduli

have been set to zero. In this limit we may have a singular 3-fold which is described by

the Kähler class J = φiSi. Our convention is to assume φi ≥ 0 and compute volumes with

respect to −J ; thus, the volume of a curve C is given by vol(C) = −J · C and the volume

of a divisor D is vol(D) = J2 ·D.4 Since we require −J to define a Kähler metric which

assigns postive volumes to complex p-cycles in X, a necessary condition for shrinkablity is

vol(C) = −J · C ≥ 0, ∀C ⊂ S. (3.1)

What happens when the inequality (3.1) is saturated? Suppose there exists a curve C,

with vol(C) = 0. So far, we have only considered the case in which all non-normalizable

Kähler moduli are set to zero. To give finite volume to C requires a non-normalizable Kähler

deformation, which in turn implies the existence of a non-compact 4-cycle N attached to

S along C. Notice that since C belongs to N , there may also be other compact curves

C ′ which are homologous to C in N ; in particular, the full set of curves homologous to C

can fiber over N . For each of these curves C ′ it must be that vol(C ′) = 0, and thus N

can be said to have degenerated to a non-compact 2-cycle along its fibers.5 By making a

non-normalizable Kähler deformation, we can bring the curve C = S ∩N to finite volume,

and we expect that we are again in a situation where the surface S is contractible.

We believe that the above necessary criteria are in fact sufficient to define a shrinkable

3-fold:

Conjecture. Let X be a smooth CY 3-fold modeled locally as the neighborhood of a

connected union of compact Kähler surfaces S = ∪Si. Then S is shrinkable provided that

−J ·C ≥ 0 for all curves C ⊂ S and that there is one Si with positive volume and the rest

should have non-negative (possibly zero) volume.

Elliptic Calabi-Yau 3-folds are immediately ruled out by these criteria. F-theory on

an elliptic 3-fold engineers a 6d theory. In a 6d theory, cubic terms in the prepotential

F are trivial; they are non-trivial only when we compactify the 6d theory on a circle and

turn on holonomies for gauge symmetries where the circle size is inversely proportional to a

mass parameter (or a non-compact Kähler parameter). This means that the volumes of all

4-cycles in the associated 3-fold are zero when we turn off mass parameters (or equivalently,

in the 6d limit). Therefore elliptic 3-folds are not shrinkable.

4This choice of sign is consistent with the description of Kähler classes J on compact CY 3-folds, as the

expansion of J (or any other ample divisor class) in terms of Si will have non-positive coefficients. A simple

example illustrating this point is the rank 1 case, for which S is a del Pezzo surface. Since J ·C = φKS ·C,

it follows that J has non-positive intersection with all curves C ∈ S. We therefore have to change the sign

in order for J to be a limit of Kähler classes on X.
5It would interesting to compare this defintion of shrinkability with the conjecture of [25] that canonical

3-fold singularities give 5d SCFTs, since it is known that the only noncompact 4-cycles in a Calabi-Yau

(crepant) resolution of a canonical 3-fold singularity are ADE fibrations. However, we do not need this for

the description in our classification.

– 13 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
3

3.3 Building blocks for shrinkable 3-folds

We now argue in favor of a series of simplifying assumptions we make concerning the

surfaces S which are instrumental for our proposed classification of shrinkable rank 2

surfaces modulo physical equivalence. Observe that when the inequalities of (3.1) are

all strict, then S is contractible [26], so that S can be contracted to an isolated singular

point p of a singular 3-fold Y . In more precise mathematical terms, this means there exists

a holomorphic map f : X → Y with f(S) = p such that f restricts to an isomorphism away

from S, i.e. f |X−S : X−S ∼= Y −p. Since X is at finite distance from Y in moduli space, it

is evident that contractibility of S ⊂ X implies shrinkability of X. When a curve has zero

volume, we expect that we can obtain a contractible surface by means of a non-normalizable

Kähler deformation which involves bringing non-compact 4-cycles to finite volume. Hence,

we conjecture that a holomorphic map f exists when S is shrinkable, as well:

Conjecture. Let X be a shrinkable CY 3-fold modeled locally as a neighborhood of a

connected union of compact Kähler surfaces S = ∪Si meeting a (possibly empty) collection

of non-compact surfaces N = ∪Nj . Then there exists a holomorphic map f : X → Y

sending S to a point p and N to a collection of curves C such that f |X−S−N : X−S−N →
Y − C is an isomorphism.

The existence of a holomorphic map f as described above permits a number of sim-

plifying assumptions for the following reasons. Replacing the singular 3-fold Y by its

normalization if necessary, we can assume that the singularities of Y are normal. It follows

that Y has “canonical singularities”, and moreover that X is a crepant resolution of Y .

But it is known the components of the resolutions of canonical threefold singularities Y

are rational or ruled [27].

We next argue that we can further restrict the types of possible building blocks by

exploiting physical equivalence:

Conjecture. Shrinkable surfaces are physically equivalent to a shrinkable surface S =

∪Si, where the irreducible components Si are either equal to P2 or a blowup BlpFn of a

Hirzebruch surface at p points intersecting one another (or self-intersecting) transversally.

Moreover, there exist non-negative integers pmax(n) such that p ≤ pmax(n).

We briefly discuss the content of the above conjecture, deferring a more detailed discus-

sion of the first two points to section 3.5. In that section, we describe the rank 2 case only.

For higher rank, we have to also consider the situation where three surfaces can intersect

transversally.6 At such a point of intersection, called a triple point, the three intersecting

surfaces have local equation xyz = 0. As part of the argument in section 3.5, we blow up

a point where two surfaces intersect, at which the intersecting surfaces have local equa-

tion xy = 0, so our construction will not apply at a triple point. To handle triple points,

we simply supplement the argument in section 3.5.1 by noting that a complex structure

deformation will keep a point to be blown up distinct from any of the triple points.

6Since four or more surfaces in a threefold cannot intersect nontrivially and transversally, we only need

to consider intersections of three surfaces at a time.
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1. Using a combination of complex structure and Kähler deformations, it is possible

to map a 3-fold containing a ruled surface over a genus g to a 3-fold containing a

Hirzebruch surface. We defer a detailed discussion to section 3.5.

2. In all examples that we have investigated, we have been able to bypass non-transverse

intersections in one of two ways: either by a complex structure deformation, or by a

Kähler deformation in the form of a flop. The idea is that when we flop a curve (in

S1, say) which passes through a point of non-transversal intersection, the result is

to blow up S2 at that point, simplifying the singularity of the intersection curve and

rendering it more transverse. We therefore assume that a combination of complex and

Kähler deformations will always suffice to produce a 3-fold containing transversally

intersecting surfaces Si.

3. We prove in appendix A.2 that if p > pmax(n) there are infinitely many generators for

rational curves. The presence of infinitely many generators is expected to indicate the

presence of an infinite dimensional global symmetry group. An example of this is dP9

(note pmax(1) = 7), in which case the symmetry group permuting these generators

is the affine E8 Weyl group. In such a case, the Weyl group is infinite dimensional,

and can be interpreted as a finite symmetry group of a 6d theory viewed from the

5d perspective. As we discussed above, geometries associated to 6d theories are not

shrinkable. Since a CFT should not have an infinite dimensional global symmetry

group, we claim that surfaces Si with an infinite number of Mori cone generators

cannot be building blocks for 5d SCFTs and are thus excluded.

3.4 Consistency conditions for shrinkable 3-folds

The condition that S is contained in a CY 3-fold imposes constraints on the curves of inter-

section of the components of S, which will be exploited in a crucial way in our classification

program.

Let S1 and S2 be two smooth surfaces glued along a curve C = S1 ∩ S2. Now suppose

that S1∪S2 is contained in a 3-fold X, and that the intersection of S1 and S2 is transverse in

X. Then the normal bundle of C in X is given by NC,X = NC,S1 ⊕NC,S2 . The Calabi-Yau

condition then implies

C2
S1

⊕ C2
S2

= 2g − 2, (3.2)

where g is the genus of C and the subscripts on the right-hand side denote the irreducible

surface in which the self-intersection takes place. The gluing curves must satisfy the ad-

junction formula for each surface Si:

(K · C)Si + C2
Si

= 2g − 2, (3.3)

where KSi is the canonical class of the surface Si. For the rank 2 case, which is the primary

focus of this paper, we argue in section 4.2 that it suffices for our classification to assume

that g = 0.

Suppose a compact connected holomorphic surface S satisfies the above constraints on

its curves of intersection. These constraints immediately imply that a CY 3-fold can be
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found containing a neighborhood in S of the curves of intersection (for example, the total

space of the normal bundle of S1 ∩ S2 in X works, as the complement of S1 ∩ S2 ⊂ S is

smooth). Moreover, we can also find local CY 3-folds containing the complement of the

intersection curves S1 ∩ S2 in S (for example, just take the total space of the canonical

bundle as before). Therefore, it seems reasonable to expect that above two types of local

models can be glued to form a local model of a CY 3-fold. In other words, given smooth

holomorphic surfaces S1 and S2 glued along a smooth curve C and satisfying (3.2), a smooth

CY 3-fold X can be found containing S = S1 ∪S2. While we have not proven that such an

X can always be found if (3.2) and (3.3) are satisfied, these conditions are consistent with

all known examples and it is presumably not too difficult to rigorously prove this.

We emphasize here that the above gluing condition is a local condition that has no

bearing on the overall topology of the surface S, and therefore permits a variety of in-

teresting configurations. In principle there is nothing preventing, for example, gluing two

surfaces together along multiple irreducible curves. Another interesting configuration in-

volves two curves belonging to a single surface Si being glued together. However, we will

see that the only gluing configurations which play a role in the rank 2 classification are

pairwise transverse intersections between the irreducible components S1 and S2.

The above discussion plays an essential role in our classification because we do not

need to actually construct X to proceed; rather, we only require the existence of X and

the existence of a surface S can be used as a proxy for the existence of a local 3-fold. Thus

the problem of classifying shrinkable 3-folds can be reduced to the problem of classifying

embeddable, shrinkable surfaces S.

A simple example: S = F0 ∪ F2. An illustrative example of this construction is a

simple complex surface S = S1 ∪ S2 with S1 = F0, S2 = F2 as depicted in figure 2. Our

rank 2 ansatz gives us

J3 = S3
1φ

3
1 + S3

2φ
3
2 + 3φ1φ2(J · S1 · S2) = K2

S1
φ3
1 +K2

S2
φ3
2 − 3φ1φ2vol(S1 ∩ S2). (3.4)

The first order of business is to determine an appropriate gluing. Gluing these two

surfaces together requires us to identify an irreducible, smooth curve C = S1∩S2 belonging

to the Mori cone of both surfaces, satisfying (3.2). In the case of Hirzebruch surfaces

Fni , the Mori cones are the positive linear spans 〈Ei, Fi〉, where the curve classes satisfy

the intersections F 2
i = 0, Ei · Fi = 1, E2

i = −ni, so the range of possibilities is severely

restricted. The gluing condition (3.2) implies that the self intersection of one of the two

gluing curves must be negative. Since the curve E is the unique rational curve with negative

self intersection [28], it therefore follows that we must select CSi = Ei for one of the two

surfaces, say CS2 = E2. The other curve must then satisfy

C2
S1

= 0. (3.5)

As a trial solution let us take CS1 = aF1 + bE1, so that C2
S1

= 2ab = 0. Therefore, either

a = 0 or b = 0. From the adjunction formula (3.3), we know that (C · E1 + C · F1)S1 =

a + b = 1, and therefore the remaining nonzero coefficient must be set equal to unity. To
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Figure 2. Example of a gluing construction of the Kähler surface S = F0 ∪ F2. The gluing curves
in both surfaces, C1, C2, are encircled by dashed lines in the left figure. The final geometry (on the
right) is the result of identifying these two curves subject to the conditions described in section 3.

be concrete, we choose

CS1 = F1, CS2 = E2. (3.6)

Now that we have constructed the surface S, we must check that the local 3-fold X

associated to this surface is shrinkable. We parametrize a Kähler class J as follows:

J = φ1[F0] + φ2[F2], (3.7)

where [F] is the class associated to the 4-cycle F ⊂ X. The Mori cone ofX is the union of the

Mori cones of the component surfaces Si, namely the positive span 〈E1, E2, F2〉 (we omit F1

because the gluing identifies F1 and E2.) Therefore, the shrinkability condition (3.1) implies

(vol(E1), vol(E2), vol(F2)) = (2φ1 − φ2, 2φ1,−φ1 + 2φ2) ≥ 0. (3.8)

Since that the above conditions can be satisfied for a nontrivial set of Coulomb branch

parameters φi, we conclude that the geometry X corresponds to a 5d SCFT on the

Coulomb branch.

3.5 Geometry of physical equivalences

In this section we discuss some important types of physical equivalences upon which our

classification relies. Many of these equivalences identify 3-folds related by geometric transi-

tions, i.e. maps between smooth geometries which involve passing through an intermediate

singularity. Another type of physical equivalence identifies 3-folds related by a “large”

change in the complex structure of non-dynamical modes, which interpolates between two

singular geometries — this is a Hanany-Witten transition [29]. We illustrate these two

types of maps in turn.
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Figure 3. A local illustration of a flop transition X → X ′ between two CY 3-folds. The red lines
in both diagrams correspond to the −1 curves in (respectively) X and X ′.

Figure 4. A genus g = 2 Riemann surface degenerating into a g = 1 Riemann surface with a
nodal singularity as the result of identifying two points. By identifying g pairs of points in this
manner, it is possible for a smooth curve of genus g to degenerate into a rational curve with g nodal
singularities.

3.5.1 Geometric transitions

Flop transitions. One of the simplest and most thoroughly studied types of geometric

transitions is a flop transition, which is a topology-changing transitionX → X ′ between two

3-folds X,X ′ that is in practice typically realized by blowing down a −1 curve C ⊂ X and

blowing up a different −1 curve C ′ ⊂ X ′ (see figure 3). A flop is a birational map X !!" X ′

which is an isomorphism away from curves C,C ′, with KX ·C = KX′ ·C ′ = 0. If C and C ′

are both isomorphic to P1, the flop is called a simple flop. Simple flops were classified in [30].

In field theoretic terms, a flop transition corresponds to a continuous change of the

mass of a particular state in the matter hypermultiplet from positive to negative values;

this change corresponds to a singular phase transition on the Coulomb branch.

Genus reduction. We saw in section 3.3 that the Si can be ruled surfaces over higher

genus curves as well as genus 0. Here we argue that by our notion of physical equivalences

we can restrict to g = 0 using geometric transitions. This can be obtained by composing a

complex structure deformation of a surface Si with a flop transition. This provides a map

from a ruled surface over a curve of genus g to a self-glued Hirzebruch surface.

This type of geometric transition is particularly important because it exhibits the non-

normalizable Kähler moduli of the local 3-fold defined by a ruled surface over a curve of

genus g as blowup parameters of the 3-fold defined by a self-glued surface Bl2gFn. While we

have not proven that the transition can always be achieved in the higher rank case due to

the requirement that additional compact surfaces remain glued throughout the transition,

we nevertheless believe this construction can be extended to higher rank surfaces with at

most minor modifications.

Before giving a detailed description of this geometric transition, we recall that by the

irreducibility of the moduli space Mg of stable curves of genus g the complex structure of

– 18 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
3

a) b)

c) d)

Figure 5. A transition from a ruled surface over a g = 1 curve to a Hirzebruch surface. The red
point in the second figure is a blowup point on a nodal curve and the red lines in the third figure
are the exceptional curves. Two proper transforms of the fiber F in a blown up Hirzebruch surface
are glued together along the nodal curve.

a smooth curve C of genus g can be degenerated to a rational curve C0 with g nodes (see

figure 4.) The curve C0 can be constructed directly by identifying g pairs of points of P1.

Note that this construction immediately extends to give a degeneration of a ruled surface

S over C to a ruled surface S0 over the singular curve C0. Conversely, the degeneration

of the ruled surface can be described by starting with P1-bundle over P1 (i.e. a Hirzebruch

surface Fn) and identifying g pairs of fibers F ⊂ Fn.

However, this description of S0 is not completely satisfactory, as S0 cannot be embed-

ded into a CY 3-fold for the following reason. Let F ⊂ S0 be one of the singular fibers

obtained by identifying g pairs of fibers. Locally, S0 has two branches near F with equation

xy = 0 (pulled back from the local equation xy = 0 of a node of C0). Being a fiber, F

has self-intersection 0 in each branch, So if S0 were contained in a smooth threefold, the

normal bundle of F would be OF ⊕ OF . Fortunately, the geometric transition naturally

rectifies this problem by introducing blowups, in a manner which we describe below.

Consider again the degeneration point of view, which can be described by a holomor-

phic map π : S → ∆. Here S is a smooth7 threefold, ∆ is a disk, π−1(0) / S0, and π−1(t)

is diffeomorphic to S for t 0= 0. We now pick a point p ∈ F ⊂ S0 ⊂ S and blow up p to get

φ : S̃ → S. Via π ◦ φ we can view S̃ as a family over ∆. However, S̃ and S are isomorphic

over ∆ − 0, so this gives another degeneration of S. The singular limit is (π ◦ φ)−1(0),

which we now describe.

7Requiring S to be smooth is not a problem; its local equation near a point of F can be taken as xy = t,

which is smooth. This is the same local calculation which shows that Mg is smooth at the nodal curves (in

the orbifold sense).
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Blowing up a point p in a smooth threefold creates an exceptional divisor E isomorphic

to P2, and blows up S0 to a surface S̃0. We have (π ◦ φ)−1(0) = S̃0 ∪ P2. It remains to

describe S̃0 and how P2 is attached to it.

Since S0 has local equation xy = 0 at p, the exceptional curve of S̃0 → S0 has xy = 0 as

its equation. In this latter instance, the equation xy = 0 is understood as a homogeneous

equation in the exceptional P2 of the blown-up threefold. In other words, P2 meets S̃0 in

two intersecting projective lines L,L′; each of these P1’s can be thought of as arising from

the blowup of p in a corresponding branch of S0 near p.

The point of intersection q = L ∩ L′ also intersects the proper transform F̃ of the

original singular fiber F . The curve F̃ is still singular in S̃0 and still has two branches in a

local description, but now the blowup has reduced the self-intersection from 0 to F̃ 2 = −1

in each branch. So if S̃0 is contained in a smooth threefold, then the normal bundle of F̃

is OF (−1)⊕OF (−1) and the threefold can be Calabi-Yau!

We can apply this construction to all of the g singular fibers. Since F̃ has self-

intersection −1 in each branch, we can view it as the gluing of a pair of exceptional P1’s.

Therefore the resulting S̃0 is a blown up Hirzebruch surface with g pairs of exceptional

curves identified. Each singular fiber consists of a double curve with self-intersection −1

in each branch, glued at a common point q to curves L,L′ of self-intersection −1 in each

of the respective local branches (the surface S̃0 is smooth along L ∪ L′ − {q}).
In the degeneration described above, we also need to attach g copies of P2. However,

we are only concerned with the rank 2 case, so in our examples these P2’s can replaced by

noncompact cycles containing L ∪ L′ and safely ignored.

The final step is to flop the g curves F̃1, . . . F̃g, where we have added a subscript to

F̃ to distinguish these curves. Let us investigate the birational transform of S̃0 after the

flops. When the curves F̃i are contracted, the points of intersection qi = Li ∩ L′
i become

conifolds. When we complete the flops, new P1’s appear in place of the qi and the curves

Li, L′
i get separated. These curves become identified with fibers of a ruled surface over the

desingularization C̃0 of C0, the fibers over the pairs of points of C̃0 which get identified

to form a node of C0. Since C̃0 is isomorphic to P1, the result is a Hirzebruch surface in

general with blowups.

An example of genus reduction: G2+NFF. An illustrative example of complex de-

formations that exchange ruled surfaces over a curve of genus g > 0 for self-glued Hirzebruch

surfaces blown up at 2g points is the family of shrinkable 3-folds engineering G2 + NFF,

as described in [31].

We begin by recalling the form of the gauge theoretic 1-loop prepotential for G2 +

NFF+Nadjadj:

6F1-loop = (8− 8NF − 8Nadj)φ
3
1 + (8− 8Nadj)φ

3
2

+ 3φ1φ2[(6 + 3NF − 6Nadj)φ1 + (8Nadj −NF − 8)φ2].
(3.9)

We set Nadj = 0 to be consistent with N = 1 supersymmetry. By giving a nonzero value

to mass parameters in the hypermultiplet contributions to the prepotential, one can study

the RG flow from NF to NF−1 flavors. In order to decouple a massive hypermultiplet, the
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g a (n1, n2)

0 1 (8, 0)

1 0 (9, 1)

2 2 (10, 0)

3 1 (11, 1)

4 0 (12, 2)

4 3 (12, 0)

5 2 (13, 1)

6 4 (14, 0)

Table 2. Shrinkable surfaces S = Fg
n1

∪ Fn2 engineering G2 + NFF gauge theories. The surface
Fg
n1

is a ruled surface over a curve E with g(E) = NF and satisfying E2 = −n1. The gluing curve
C = S1 ∩ S2 is given by CS1 = E and CS2 = aF + 3H. The fiber classes are given by are fi = Fi.

theory must pass through three phase transitions. These four phases have the following

prepotentials (we omit mass parameter terms for brevity):

6F (1) = (8− 8NF)φ
3
1 + 8φ3

2 + 3φ1φ2[φ1 (3NF + 6)− φ2 (NF + 8)]

6F (2) = (16− 8NF)φ
3
1 + 7φ3

2 + 3φ1φ2[φ1 (3NF + 2)− φ2 (NF + 6)]

6F (3) = (15− 8NF)φ
3
1 + 8φ3

2 + 3φ1φ2[φ1 (3NF + 3)− φ2 (NF + 7)]

6F (4) = 6F (1)
NF−1.

(3.10)

We determine a shrinkable Kähler surface S that engineers this theory by setting

the triple intersection polynomial (3.4) equal to prepotential (3.9) and demanding that

there exist an intersection matrix fi · Sj = (AG2)ij for some choice of fiber classes fi ⊂ Si.

Restricting the possible building blocks to be blowups of rational and ruled surfaces without

self-gluing, the only solutions to these conditions are the geometries shown in table 2. For

all of these surfaces we have 9n2+6a = 2g− 2+n1, as required by (3.2). A key point here

is that the surface S1 must be a ruled surface of a curve of genus g = NF. This is precisely

the geometric setup described in [31].

We now demonstrate that we can engineer the same family of theories described above

by replacing S1 with the surface S′
1 = Bl2gF(g)

n1 , where again g = NF and the superscript

notation indicates S′
1 is obtained by identifying g pairs of exceptional curves in Bl2gFn1

(i.e. self-gluing; see appendix A.1 for some mathematical background.) This shrinkable

surface not only reproduces the prepotential (3.9) and G2 Cartan matrix, but also has the

merit of exhibiting the RG flow (3.10) in a very natural manner. The four phases, related

by flops, have the following geometries:

1. Bl2gF(g)
8−g ∪ Fn2 , where the blowups are all at special points8 F ∩ E.

8Note that while we consider blowups at special points F ∩ E ⊂ Fn here for convenience, since we do

not introduce any additional irreducible curves with self intersection less than −1, we can without loss of

– 21 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
3

2. Bl2g−2F(g−1)
8−g ∪ Bl1Fn2 .

3. Bl2g−1F(g−1)
8−g ∪ Fn2±1.

4. Bl2g−2F(g−1)
9−g ∪ Fn2±1.

The first phase is Bl2gF(g)
8−g ∪Fn2 , where we introduce g self-gluings of Bl2gFp along the

pairs of exceptional divisors X2i, X2i−1, i = 1, . . . , g,9 the where the gluing curve is defined

by CS1 = E −
∑2g

i=1Xi and CS2 = F + 3H, so that a = 1 in the notation adopted in the

caption of table 2. Since the canonical class10 is given by KF8−g +2
∑NF

i=1(X2i−1+X2i), we

find a perfect match with the first line of (3.10), using the adjunction relation 9n2 + 6 −
(8 + g) = 2g − 2.

We now describe the flop to the second phase. The matter curve with volume 2φ1−φ2

which shrinks is one of the self-gluing exceptional divisors, say X1. Blowing down X1 forces

us to also blow down X2. We can blow up Fn2 at a generic point F2 ∩H2 if we eventually

want to decrease n2 to n2 − 1, or at a special point F2 ∩ E2 if we want to increase n2 to

n2 + 1 in the third phase.

The geometry of the second phase is Bl2g−2F(g−1)
8−g ∪Bl1Fn2 , where CS1 = E−

∑2g−2
i=1 Xi

and CS2 = aF +3H − 2Y1. Since the blowup of Fn2 is at the double point of E introduced

by gluing X2g−1 to X2g, the coefficient of Y in CS2 is −2.

The matter curve with volume φ2 − φ1 which we blow down is F2 − Y1 ⊂ Bl1Fn2 .

Because F − Y1 meets C in one point, we must introduce an exceptional divisor Y2 in the

surface S1, leading us to the third phase.

The geometry of the third phase is Bl2g−1F(g−1)
8−g ∪Fn2±1, where CS1 = E−

∑2g−2
i=1 Xi−

Y2. Concerning the gluing curve class C ⊂ Fn2±1, there are two possible cases. In the case

of a generic blowup, the proper transforms of H,F ⊂ S2 are H − Y1, Y1, so we set CS2 =

(a+1)F+3H, where now H2
S2

= n2−1. It follows that C2
S2

= ((a+1)F+3H)2S2
= 6(a+1)+

9(n2−1) = 3g+3, which is a nontrivial check that this geometry is consistent with the phase

structure of the G2 theory. On the other hand, in the case of a special blowup, the difference

is that the proper transform of H ⊂ S2 is H, so that CS2 = H + (a − 2)F , where now

H2
S2

= n2+1. We again confirm that C2
S2

= ((a−2)F+3H)2S2
= 6(a−2)+9(n2+1) = 3g+3.

In order to reach the fourth and final phase, the matter curve with volume φ1 which

we blow down is F − Y2 ⊂ S1. The geometry of the fourth phase is Bl2g−2F(g−1)
9−g ∪ Fn2±1.

Keeping in mind the previous identity n1 = 8 − g along with the fact that we blow down

generality view a blowup of Fn at p special points as a blowup of Fn+p at p general points. We explore the

distinction between special and general points in more depth in section 4.2.
9Here and in the sequel, we use the notation Xi to denote the exceptional divisor of the i-th blowup,

since we reserve the more standard notation Ei for sections of Hirzebruch surfaces.
10More precisely, the dualizing sheaf of the singular surface Bl2gF(g)

8−g, pulled back to its natural desingu-

larization Bl2gF8−g.
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⊗

⊗

⊗

⊗

Figure 6. Hanany-Witten transition from F2 to F0. The ⊗ symbol denotes the location of a
transverse (0, 1) 7-brane, and the dashed line denotes the location of the 7-brane monodromy cut.

the curve F − Y2 ⊂ S1, we compute the canonical class:

KS1 = −2H + (n1 − 2)F + 2
g−1∑

i=1

(X2i−1 +X2i) + Y2

= −2H + ((n1 + 1)− 2)F + 2
g−1∑

i=1

(X2i−1 +X2i).

(3.11)

Note also that the self-intersection of H ⊂ S1 shifts from 8− g to 9− g.

3.5.2 Hanany-Witten transitions and complex deformations

The next type of transition we will discuss is a complex structure deformation. In particular,

we concern ourselves with two types of complex structure deformations that preserve the

rank of the 3-fold. The first type of complex structure deformation is a Hanany-Witten

(HW) transition [29]. This type of transition is most easily understood in the setting of

(p, q) 5-brane webs, and involves interchanging the relative position of a (p, q) 7-brane and

a (p, q) 5-brane. After the transition, despite the fact that the brane webs look different, in

the low-energy decoupling limit the corresponding SCFTs describe the same physics up to

decoupled free sectors. The example displayed in figure 6 describes a geometric (or HW)

transition from a local 3-fold X with S = F2 to another 3-fold X ′ with S′ = F0. Therefore,

X and X ′ are physically equivalent.

This example can be geometrically described as follows: F2 is physically equivalent to

F0 by a (non-normalizable) complex structure deformation. One way to see this is to first

contract the curve E in F2 (with E2 = −2) to an A1 singularity, which can be identified

with the quadric cone x2+y2+z2 = 0 in P3. A complex structure deformation takes this to

a smooth quadric surface (e.g. w2+x2+ y2+ z2 = 0), which is isomorphic to P1×P1 = F0.

Another type of complex structure deformation involves changing special type blow

ups (i.e. blow ups on top of blow ups) to generic blow ups, where the blow up points are
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S = S1 ∪ S2 G

(F6 ∪ dP4)∗ Sp(2)θ=0 + 3AS

(F2 ∪ dP7)∗ SU(3)4 + 6F

Sp(2) + 4F+ 2AS

G2 + 6F

(Bl9F4 ∪ F0)∗ SU(3) 3
2
+ 9F

Sp(2) + 8F+AS

(Bl10F6 ∪ F0)∗ SU(3)0 + 10F

Sp(2) + 10F

Table 3. Rank 2 geometries with maximal M . In the above table, S is the rank 2 Kähler surface,
while G is the corresponding gauge theory description. These geometries denoted as (·)∗ are not
shrinkable and correspond to 5d KK theories.

not on top of one another, unless the blow up curve is part of the identification between

Si’s. We will show that in the rank 2 case this can be avoided and we can always assume

general point blow ups.

4 Classifications

Let S = ∪Si be a connected union of surfaces contained in a CY 3-fold X. We classify all

shrinkable S for rank 1 and rank 2 according to the conjectures and algorithm described in

section 3. We first summarize the rank 1 and rank 2 classification results and in the next

two subsections we present details of the classification.

All rank 1 and rank 2 shrinkable geometries (or SCFTs) belong to one or more families

of geometric RG-flows, and the geometries in each RG-flow family are related by rank-

preserving mass deformations (or blowdowns of -1 curves in geometric terminology), up to

physical equivalence. The ideas of geometric RG-flow and rank-preserving mass deforma-

tions will be discussed later. Based on these ideas, we can start from a “top” geometry,

which corresponds to a 5d CFT or a 6d CFT on a circle (equivalently, a 5d Kaluza-Klein

(KK) theory), and obtain all other geometries in the same family by a finite sequence of

geometric transitions or mass deformations. This UV geometry is at the top of the RG-

flow in a given family and can therefore be a representative of the entire RG-flow family.

We conjecture that all descendants of the top UV geometry engineer 5d SCFTs. When

shrinkable, the top UV geometry itself also engineers a 5d SCFT.

For rank 1 geometries, we have only one RG-flow family corresponding to a local elliptic

3-fold defined by the del Pezzo surface dP9. All other rank 1 geometries are obtained by

blowing down exceptional curves. The RG-flow family of dP9 involves other del Pezzo

surfaces dPn with n ≤ 8 and a Hirzebruch surface F0; it is believed that these are the

complete set of geometries leading to rank 1 5d SCFTs.
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Similarly, the top rank 2 geometries are summarized in table 3. We have identified

four geometric RG-flow families represented by these top geometries. These geometries are

not shrinkable; rather, we expect that these geometries have 6d UV completions and thus

they engineer 5d KK theories. However, their descendants, obtained by blowing down −1

curves, are shrinkable and therefore give rise to 5d SCFTs. For example, the geometry

Bl9F4 ∪ F0 is ruled out from our CFT classification because its building block Bl9F4 has

an infinite number of Mori cone generators as explained in appendix A.2.1, violating our

criterion in section 3.3. However, a geometric RG-flow from this geometry by blowing

down an exceptional curve as well as a number of flop transitions leads to the geometry

Bl8F3 ∪dP1 which is now shrinkable and engineers a 5d SCFT. Similarly, other geometries

in table 3 are associated to KK theories, but their descendants are shrinkable. Therefore,

we find that all rank 1 and 2 smooth 3-fold geometries engineering 5d SCFTs are mass

deformations of 5d KK theories. See section 4.2 for further discussion.

This result confirms the existence of many new rank 2 SCFTs predicted in [13] which

are listed in table 1. For example, the SU(3)7 gauge theory is predicted to exist in table 1a.

This theory turns out to have a geometric realization as F0 ∪ F8 which is a descendant of

F2∪dP7. This implies that the gauge theory approach in [13], which analyzes the magnetic

monopole and perturbative BPS spectrum, is quite powerful and capable of predicting new

interacting 5d SCFTs.

Our study also reveals that there are no smooth 3-fold geometries associated to the

following gauge theories:

SU(3) 1
2
+ 1Sym ,

SU(3)7 + 2F → SU(3) 15
2
+ 1F → SU(3)8 .

(4.1)

These theories are expected to have interacting CFT fixed points by the perturbative

gauge theory analysis in [13]. See table 1a. The SCFT of the first gauge theory indeed

exists — this theory is a mass deformation of the SU(3)0 theory with NSym = 1, NF = 1

whose brane construction is given in [32, 33]. Our study of smooth 3-folds fails to

capture this theory. The reason for this failure is because the corresponding geometry

involves a ‘frozen’ singularity. For example, the brane construction in [32, 33] contains

O7+-planes; indeed, constructions involving O7+ planes are dual to frozen singularities

involving non-geometric monodromies and a fractional M-theory 3-form background as

discussed in [14]. Therefore, we do not expect that our analysis can capture this type

of singularity, and hence the geometric classification in this paper is incomplete in this

sense. We nevertheless conjecture that our classification includes all 5d SCFTs coming

from smooth Calabi-Yau threefolds which do not involve frozen singularities dual to brane

constructions involving O7+ planes. In the following sections, we classify smooth rank 1

and rank 2 3-fold geometries engineering 5d SCFTs in their singular limits.

On the other hand, we predict that there are no SCFTs corresponding to three gauge

theories belonging to the RG flow in the second line of (4.1). As we discuss in section 4.2,

despite the fact that these gauge theories can be realized geometrically using our algorithm,

they are shrinkable only when we attach a number of non-degenerate non-compact 4-cycles
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to the compact surface S. Introducing these non-compact 4-cycles entails non-normalizable

Kähler deformations which in the field theory setting corresponds to introducing nonzero

mass parameters. We find that these mass parameters cannot be set to zero in the CFT

limit — at small nonzero values, the corresponding geometries develop at least one 2-

cycle with negative volume and therefore their singular limits do not engineer well-defined

CFT fixed points. This computation excludes the three gauge theories in the second line

of (4.1) as possible candidates for interacting 5d SCFTs. This is also an indication that the

classification criteria described in [13] are necessary, but not sufficient to identify 5d SCFT

fixed points. The criteria of [13] must be modified to account for non-perturbative BPS

states (such as instantons in gauge theories) in order to be both necessary and sufficient.

We also remark that a single 3-fold X can admit multiple gauge theory descriptions.

This is possible because some geometries admit more than one distinct choice of fiber class

associated to charged gauge bosons. The existence of multiple gauge theoretic descriptions

corresponding to a single geometry suggests that the gauge descriptions are dual to one

another. Starting with the “top” UV geometries in table 3, we predict the following

dualities:

SU(3)
5−NF

2

+NFF ∼= Sp(2) +NFF , NF ≤ 10

SU(3)
6−NF

2

+NFF ∼= Sp(2) + 1AS+ (NF − 1)F , 1 ≤ NF ≤ 9

SU(3)
7−NF

2

+NFF ∼= G2 +NFF
2≤NF∼= Sp(2) + 2AS+ (NF − 2)F , NF ≤ 6

(4.2)

The first and the second dualities in (4.2) were conjectured already in [22] and in [13],

respectively. So our construction provides concrete geometric evidence for these duality

conjectures. On the other hand, the third duality is a new duality discovered by an explicit

geometric construction in this section.

4.1 Rank 1 classification

We warm up by starting with rank 1, recovering the result that all rank 1 5d SCFTs are

geometrically engineered by local 3-folds containing a del Pezzo surface. More precisely, our

algorithm identifies del Pezzo surfaces as shrinkable, but also identifies additional shrinkable

surfaces; however, each of these turns out to be physically equivalent to a del Pezzo surface.

Recall that a del Pezzo surface S is defined to be a smooth algebraic surface whose

anticanonical bundle −KS is ample — this means that −KS ·C > 0 for all effective curves

C ⊂ S. The classification of del Pezzo surfaces is well known: S is either dPn for 0 ≤ n ≤ 8

or P1 × P1 = F0. Such a surface satisfies (3.1) as well as K2
S > 0, so is shrinkable. We now

set out to systematically classify rank 1 shrinkable surfaces up to physical equivalence.

To apply (3.1), we need to know KS , the generators of the Mori cone of curves on S,

and the intersection numbers of the curves in S. Our algorithm leads us to consider P2,

Fn, and their generic blowups.

P2 is del Pezzo, but it is instructive to check shrinkability anyway. For P2, the Mori

cone is generated by the class & of a line, &2 = 1, and KP2 = −3&. So K2
P2 = 9 > 0 and

KP2& = −3 < 0, so P2 is shrinkable.
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Next, we consider F0, F1 and Fn≥2 separately. Since F1 is the blowup of P2 at a point,

F1 and its generic blowups are just the generic blowups of P2. Similarly, F0 is del Pezzo,

and the blowup of F0 at a point is isomorphic to the blowup of P2 at two points [28]. So

the possibilities for S can be reduced to either generic blowups of P2, or Fn≥2.

As usual, we denote by dPn the blowup of P2 at general points p1, . . . , pn. Let

X1, . . . , Xn denote the corresponding exceptional P1’s,11 and we let & denote the class

of the total transform in dPn of a line in P2. The intersection numbers are

&2 = 1, Xi ·Xj = −δij , & ·Xi = 0 (4.3)

and KdPn = −3&+
∑n

i=1Xi. Then K2
dPn

= 9− n > 0 for n ≤ 8.

We first observe that dPn is not shrinkable for n ≥ 9. To see this, we simply observe

that K2
dPn

≤ 0 for n ≥ 9 which implies that the string tensions are not positive.

Again, we can cite known results simply say that dPn is shrinkable for n ≤ 8, but

it is instructive to work out details without assuming this fact. We adopt a convenient

shorthand to describe the generators of the Mori cone: any curve C ⊂ dPn other than the

Xi will project to a curve D ⊂ P2 of some degree d > 0. Let mi be the multiplicity of D at

pi, so that mi = 0 if pi 0∈ D, mi = 1 if p is a nonsingular point of D, mi = 2 if p is a node

or cusp of D, etc. Then the class of C is d&−
∑n

i=1 aiXi. It is customary to abbreviate this

class as (d;m1, . . . ,mn), as well as to omit any mi which are zero. Then the Mori cone of

dPn is generated by the classes12

Xi, (1; 12), (2, 15), (3, 2, 16), (4, 23, 15), (5, 26, 12), (6; 3, 27) (4.4)

up to permuting the order of the pi. It follows from the adjunction formula (3.3) that each

of the curve classes C in (4.4) satisfies KdPn · C = −1,13 so dPn is shrinkable.

Next, consider the Hirzebruch surfaces S = Fn. Using the notation in appendix A.2,

there are two disjoint toric sections E,H and the fiber class F . These classes satisfy

H2 = n, E2 = −n, H · E = 0, H · F = E · F = 1, F 2 = 0, H = E + nF. (4.5)

The canonical bundle of Fn is KFn = −2H + (n− 2)F and so K2
Fn

= 8 > 0. Furthermore,

the Mori cone of effective curves is generated by E and F . While KFn · F = −2 < 0,

we also have KFn · E = n − 2, which is strictly negative for n < 2, zero for n = 2, but

strictly positive for n > 2. Thus F2 is shrinkable. However, as discussed in section 3, this

is physically equivalent to F0. The same reasoning combined with the earlier observation

that Bl1F0 / dP2 shows that BlpF2 is physically equivalent to dPp+1.

In conclusion, all rank 1 shrinkable surfaces are physically equivalent to dPn for some

n or F0.

11As noted earlier, we reserve the more customary notation E for the curves on Hirzebruch surfaces

described in appendix A.2.
12Strictly speaking, we have only written the Mori generators for n = 8. For n < 8, we modify (4.4) by

removing those generators which need more than n exceptional divisors to define them. In addition, for

n = 1, we include (1; 1) as a generator.
13For n = 1, we also check that KdP1 · ("−X1) = −2.
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4.2 Rank 2 classification

The main result of this paper is a full classification of shrinkable rank 2 geometries up to

physical equivalence. We preface our result by arguing some further simplifying assump-

tions we make about the surface S in order to make the classification into a manageable

problem.

Three simplifications. In this section we show that we can utilize the following three

simplifying assumptions for classifying shrinkable rank 2 surfaces:

• S1 ∩ S2 is an irreducible curve.

• S1 ∩ S2 is a rational curve.

• The surfaces Si are equal to P2 or Hirzebruch surfaces and their blowups at general

points.

We now discuss these three simplifications in order.

First, we argue that in the case of a rank 2 surface S = S1 ∪ S2, we can assume that

S1 is not glued to S2 along multiple curves. Namely, there exists a single edge between

two nodes. Suppose we glue two surfaces along C1, C2 with appropriate identifications.

Since S1 and S2 should intersect transversally, we have (C1 · C2)S1 = (C1 · C2)S2 = 0.

This means that C1, C2 do not intersect. We claim there always exists an effective curve

D = d1 + d2 such that vol(D) ≤ 0. If vol(D) < 0, then S is not shrinkable, so it suffices

to consider the situation where vol(D) = 0. But in that case, we will further show below

that we can arrange for the curve D to be elliptic (i.e. g(D) = 1), which would contradict

our conjectures. Therefore, the full surface is not shrinkable implying that we cannot glue

two surfaces along two or more curves.

In order to show this, we first prove that there always exist curves di ⊂ Si with

KSi · di ≥ −2 that intersect both C1 and C2. These classes d1 and d2 are identified as

follows. First, if both C1 and C2 are not fiber classes, we can always find a curve d1
satisfying these conditions among {F, F − Xi, H − Xi − Xj}14 in BlpFn, where Xi are

exceptional curves associated to the blowups of Fn at p general points. When n > 2,

C1 = E, otherwise the volume of the curve E will be negative. Next, suppose C1 or C2 is

a fiber class. This is possible only when S1 = BlpF1 or dPn, otherwise the class E, which

has E ·C1 0= 0 or E ·C2 0= 0, will have negative volume thus preventing the surface S from

being shrinkable. In the case that S1 = BlpF1, when C1 is a fiber class F1, C2 must be one

of Xi’s, due to the assumption of transversal intersection. Then we can take d1 = H −Xi

with H2 = 1. With any choice of d1 given here, we find that vol(d1) = mφ1 − nφ2 with

m = 1, 2 and n ≥ 2 where φi ≥ 0. We can choose d2 ⊂ S2 in the same manner and then

show that vol(d2) = m′φ1 − n′φ2 with m′ = 1, 2 and n′ ≥ 2.

This proves vol(D) ≤ 0 for an effective curve D = d1 + d2. Now we will assume

vol(Ci) ≥ 0 for all other curves Ci because otherise the surface is not shrinkable and already

14For general n we choose d1 = F − Xi if C1 = Xi or C2 = Xi, otherwise d1 = F . When n = 2 and

C1 = X1, C2 = X2, we choose d1 = H −X1 −X2.
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ruled out. As already noted above, it is clear that the total surface is not shrinkable when

vol(D) < 0. Moreover, when vol(D) = 0, i.e. when m = m′ = n = n′ = 0, the curves d1
and d2 are both fiber classes Fi ⊂ Si. In this case, the curve F1 and F2 can be deformed so

that F1∩Ci = F2∩Ci for i = 1, 2. Then the curve D = F1+F2 is the union of two rational

curves intersecting in two points, hence elliptic. By further complex structure deformation

if necessary, we can arrange that all fibers F1 of S1 meet all fibers F2 of S2 in two points,

or in other words, that S = S1 ∪ S2 is elliptically fibered.

We argue that we can deform the complex structure of X if necessary so that X is

also elliptically fibered. To see this, let E be an elliptic fiber of S. Since E is part of an

elliptic fibration of S, we have that NE/S / OE . Furthermore, det(NE/X) is trivial by the

Calabi-Yau condition and the ellipticity of E. Then the normal bundle sequence

0 → NE/S → NE/X → NS/X |E → 0 (4.6)

is identified with

0 → OE → NE/X → OE → 0. (4.7)

However, since H1(OE) 0= 0, (4.7) generically does not split15 and dim H0(NE/X) = 1.

The uniqueness of a normal direction says that E moves in a 1-parameter family, enough

deformations to fiber S but not enough to fiber X.

However, we can choose a complex structure deformation of X so that (4.7) splits, and

then NE/X / O2
E . In this situation, E moves in two independent directions and fibers X.

This justifies our claim, hence S is not shrinkable. The same argument holds for cases

with more than two edges (i.e. gluing curves) between S1 and S2. Therefore rank 2 geome-

tries formed by two surfaces glued along two or more different curves are not shrinkable.

Second, we claim that the gluing curves must be rational. Suppose C = S1 ∩ S2 has

g > 0. In appendix A.2 we explain that we must have finitely many Mori cone generators

in each Si (which implies a bound on the number of blowups), hence we have finitely many

Mori cone generators in X ⊃ S = S1 ∪ S2. We argue that this implies C2
Si

≥ 0 as follows.

We assume C2
Si

< 0 and derive a contradiction. Since C2
Si

+ C · KSi = 2g − 2 ≥ 0, we

have C ·KSi > 0. Anticipating the next bulleted claim that the building blocks are generic

blowups of Hirzebruch surfaces at a bounded number of points, we show in appendix A.2

that CSi · KSi > 0 implies CSi = E. This is a contradiction, since g > 0. Although this

argument is slightly circular in its current form depending as it does on the next bulleted

claim, we believe that with further care we can independently justify C2
Si

≥ 0. Furthermore,

an extensive computer search has revealed no counterexamples.

Let us now return to the claim that the gluing curves are rational. Recalling equa-

tions (3.2) and (3.3), we have

C2
S1

+ C2
S2

= C2
Si

+KSi · C = 2g − 2 . (4.8)

These conditions tell us that KSi ·C ≥ 0. This implies that the volume of the intersection

curve, vol(C) = −φ1KS1 · C − φ2KS2 · C, is negative unless C2
S1

= C2
S2

= 0 and g = 1, i.e.

15The non-splitting of (4.7) identifies NE/X as the Atiyah bundle on E.
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unless C is an elliptic curve. This proves that rank 2 geometries containing two surfaces

meeting in a curve with genus g > 0 are not shrinkable.

Third, we observe that many of the building blocks in our classification program are

related to one another by maps (for instance, isomorphisms and complex deformations)

which at the level of 5d SCFT physics constitute physical equivalences. Therefore, we

observe that the full number of rank 2 surfaces that can be constructed from our list of

building blocks dramatically overcounts the number of unique CFT fixed points, and hence

we can reduce the complexity of the problem at the outset by restricting our attention to a

minimal representative set of configurations capturing the full list of physical equivalence

classes. We will argue in particular that we need only consider configurations S = S1 ∪ S2

for which S1 is a blowup of Fn>0 at p generic points16 and S2 is dPm or F0. We summarize

our simplifications by stating that every rank 2 shrinkable CY 3-fold can be realized locally

as a neighborhood of S = S1 ∪ S2, for which S1 = BlpFn1>0 and S2 = dPn2 or F0.

Moreover, the surfaces S1, S2 are glued along a single smooth rational curve C = S1 ∩ S2.

We argue the third simplification as follows. First, observe that all of the curves C ′

with self intersection C ′2 < −2 which do not intersect the gluing curve C have negative

volume. Therefore, the only curves C ′ 0= C with negative self-intersection should have

C ′2 ≥ −2. Suppose C ′2 = −2 and the surface S is shrinkable. Then, it should follow that

such a geometry is related via complex deformation to a physically-equivalent surface for

which the only curves C ′ of negative self-intersection have C ′2 = −1. The idea is essentially

identical to the description of a transitions already described in section 3.5: we perform a

conifold transition. Strictly speaking, this is only true up to physical equivalence, but that is

good enough for us. Hence, we may assume that the only component surfaces Si appearing

in our representative classes are those for which all curves C ′ 0= C satisfy C ′2 ≥ −1. This

already places a significant constraint on the possible configurations S1 ∪ S2.

Next, recall that our list of possible building blocks includes P2 and BlpFn, where the

configuration of p points can be special or generic. The gluing condition (3.2) implies that

one of the two gluing curves CS1 or CS2 must have negative self-intersection. Therefore,

we are forced to fix one of the two surfaces, say S1 = BlpFn1 . Observe that any blowup of

Fn at p points F ∩ E is always isomorphic to the blowup of Fn+p at p generic points, so

(redefining n) we can always assume that S1 is a blowup of Fn1 at p points away from the

curve E with self intersection E2 = −n1.

Assume that n ≥ 2 and suppose we take such a surface S1 and glue it to S2 along some

curve CS1 0= E. Then this violates the condition that all curves C ′ 0= C1 satisfy C ′2 ≥ −1,

in particular for C ′ = E. Hence, we are forced to set CS1 = E, and moreover we are confined

to surfaces S1 = BlpFn1 for which the configuration of points p is a generic configuration (a

special configuration of points would produce curves with self-intersection less than −1).

Let us focus on S2. If n1 ≥ 2, then S2 must be glued to S1 along a curve CS2 with

non-negative self intersection, C2
S2

≥ 0. Since we may again assume that all C ′ 0= CS2

satisfy C ′2 ≥ −1, it follows that S2 = dPn2 or S2 = F0. Returning to the remaining cases

16By “generic point”, we mean a point not contained in any exceptional divisors, i.e. rational curves with

self intersection −1.
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n1 < 2, we find these cases consist of gluing configurations for which Si = dPni glued

along curves CSi with C2
Si

= −1. However, dPn
∼= Bln−1F1, and therefore in order to avoid

overcounting we assume that our configuration is again of the form conjectured above.

Finally, we turn our attention to the case where one of the component surfaces Si is a

ruled surface over a curve of genus g > 0. As explained in section 3.5, a ruled surface over a

curve with genus g > 0 is physically equivalent to a blowup of Fn at 2g generic points with

g self-gluings. Notice that when S1 is the Bl2gFn with g self-gluings, the gluing curve CS1

should be the section E (with E2 = −n) since otherwise E has negative volume or leads

to an elliptic fiber class. This implies due to the shrinkability condition that the second

surface S2 is again dPm or F0. The self-gluing curves must always be exceptional curves,

and hence we perform a flop transition in which we blow these curves down at the expense

of blowing up another curve inside the surface S2. Provided we always perform enough blow

downs to completely eliminate the self-glued curves, we can always exchange a configuration

involving a self-glued blowup of Fn with one of the configurations described in the above

conjecture. This completes our argument concerning the representative configurations for

rank 2 surfaces S = S1 ∪ S2.

Endpoint classification: 0 and 1 mass parameters. In this section we show that we

can first classify geometries which are blown down ‘as much as possible’; we refer to these

as ‘endpoint geometries’. The general classification then follows by classifying endpoints

and subsequently classifying their possible blowups.

Suppose a SCFT admits mass deformations for its global symmetry. Then we can take

a large mass limit and integrate out all the heavy degrees of freedom. This triggers an

RG flow and it is expected that the SCFT below energy scales set by the masses flows

to another SCFT with a lower rank global symmetry group commuting with the mass

deformations of the UV SCFT. In general, such mass deformations can reduce the rank of

the resulting theory. Another possibility is for the IR theory to be a trivial free theory.

We pay attention to a particular class of mass deformations which leads to interacting

SCFTs while preserving the rank of the UV SCFT. Equivalently, we restrict our attention

to mass deformations which do not change the dimension of the Coulomb branch. One

can typically obtain a new interacting SCFT with the same rank by means of such ‘rank-

preserving mass deformations’. We expect that RG flows of the UV SCFT triggered by

such mass deformations can generate a family of SCFTs with the same rank but different

global symmetries. SCFTs in the family are distinguished by their global symmetries (i.e.

the number of mass parameters), as well as topological data such as the classical Chern-

Simons level k or Z2-valued θ angle.

These types of RG flows terminate in a class of interacting SCFTs which we will call

‘endpoint SCFTs’. An endpoint SCFT is defined to be a theory which does not admit any

rank-preserving mass deformations. Thus these theories are ‘endpoints’ of RG flows and

they cannot flow to other SCFTs via rank-preserving deformations. Endpoint geometries

engineer endpoint SCFTs.

Rank-preserving mass deformations and endpoint geometries are mathematically well-

defined notions. We define distinct endpoint geometries to be surfaces which cannot be
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related to another smooth surface of the same rank via a large mass deformation. Rank-

preserving mass deformations are defined as follows: suppose S is shrinkable and C ⊂ Sj

is a −1 curve which does not intersect any Sk for k 0= j. Then S can be blown down to a

surface S′ = ∪S′
i with S′

j the blowdown of the −1 curve of Sj and S′
k / Sk for k 0= j. This

type of blowdown is the geometric realization of a rank-preserving mass deformation.

We will now show that if S is shrinkable, then its endpoint geometry S′ is also shrink-

able. If C ′ ⊂ S′
i, let C ⊂ Si be its proper transform. We have K2

S′
i
= K2

Si
+ 1. If i 0= j we

have KSj · C = KS′
j
· C ′, so we need only consider the case i = j. Let p ∈ S′

j be the point

that the −1 curve in Sj blows down to, and suppose that C ′ has multiplicity m at p. Then

KS′
i
· C ′ = KSi · C −m. The desired conclusion follows immediately.

Endpoint SCFTs are interesting due to the following reasons. First, these theories

are the simplest theories in their family of RG flows. Their parameter spaces are smaller,

so they are comparatively easier to understand than other theories belonging to the same

family. The classification of endpoint SCFTs is therefore a much easier problem than the

full classification, as we will see below. We can thus regard the endpoint classification as

a tutorial on our classification algorithm. Second, all other SCFTs in the family of RG

flows in principle can be obtained from endpoint theories by increasing the number of mass

parameters. Namely, we can undo mass deformations, and retrace the RG flow to obtain

an entire family of UV SCFTs. This could sound puzzling: we know that RG flow is

irreversible. So it may be hard to accept the idea that we can restore UV theories starting

from an IR theory. However, this turns out to be the case among 5d supersymmetric

theories. Since 5d N = 1 SCFTs are so strongly constrained by supersymmetry, one

can control their RG flows by tuning discrete data such as (for theories with gauge theory

descriptions) gauge algebra, matter representations, classical CS level, and discrete θ angle.

We expect that this allows us to build a family of SCFTs starting from an endpoint theory.

From the geometric standpoint, these constraints can be understood as arising from the

Calabi-Yau condition. Mass deformations of a 3-fold correspond to blowups or blowdowns

of exceptional curves. As discussed above, a large mass deformation corresponds to blowing

down a −1 curve which is isolated from gluing curves and is in fact a reversible geometric

transition — one can just as easily blow up the same curve to recover the original 3-fold.

This means that by starting from an endpoint geometry, it is possible to obtain a family

of local (smooth) 3-folds by blowing up all possible exceptional curves. In this sense, the

study of endpoint geometries is a good starting point for the classification of 5d SCFTs.

Let us now classify all rank 2 endpoint geometries by employing our classification

algorithm. We learned above that rank 2 geometries are constructed by gluing S1 = BlpFm1

and S2 = dPm2 or F0. This implies that endpoint geometries will take the form P2 ∪ Fn or

Fn1 ∪ Fn2 . Therefore the endpoint classification reduces to a simple classification of these

two types of geometries.

We first classify geometries of the type P2 ∪ Fn. We can choose a curve class CS1 =

C1 = a& in P2 with a positive integer a and CS2 = C2 = E in Fn satisfying the gluing

condition (3.2). Since C should be rational, the integer in C1 is fixed to be either a = 1 or

a = 2. Accordingly, the second surface is fixed to be F3 or F6 respectively. Hence we find
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⊗

P2 ∪ F3 P2 ∪ F6

Figure 7. Brane configurations of rank 2 SCFTs with zero mass.

only two geometries of this type:

P2 ∪ F3 with C1 = & , C2 = E3 ,

P2 ∪ F6 with C1 = 2& , C2 = E6 .
(4.9)

These two geometries have brane constructions as depicted in figure 7. These geometries

have no mass parameter. Therefore we do not expect any gauge theory descriptions asso-

ciated to these CFTs.

The second type of endpoint geometry can be classified in the same manner. Due to the

gluing condition (3.2), a gluing curve in one of two Hirzebruch surfaces should have negative

self-intersection. We choose C2 = E2 in the second surface Fn2 . Then the gluing curve C1

in the first surface Fn1 needs to be a rational irreducible curve with self-intersection n2−2.

The curve C1 takes the form of C1 = aF1+ bH1 with a, b ≥ 0 or C1 = E1, and must satisfy

C2
1 = n2 − 2 , C1 · S1 = −n2 . (4.10)

We now need to check shrinkability conditions. In both irreducible components Si = Fni ,

the curve classes generating Mori cone are Ei, Fi. When these curve classes have non-

negative volumes with respect to the Kähler class −J = −φ1S1 − φ2S2, the local 3-fold

defined by S is shrinkable and thus engineers a 5d SCFT. In this case, the criteria for

shrinkability are

vol(E1) = (2− n1)φ1 − aφ2 ≥ 0 , vol(F1) = 2φ1 − bφ2 ≥ 0 ,

vol(E2) = (2a+ 2b− bn)φ1 + (2− n)φ2 ≥ 0 , vol(F2) = −φ1 + 2φ2 ≥ 0 , (4.11)

with φ1,φ2 > 0. We can easily solve these conditions and the gluing condition (3.2). Each

solution will give a shrinkable geometry and thus a SCFT. The full list of shrinkable surfaces

Fn1 ∪Fn2 (denoted by (n1, n2)) is given in tables 4b and 4c. Some of these geometries have

brane constructions given in figure 8. We find that only the six geometries in table 4b are

independent endpoint geometries.

In fact, all the endpoint geometries in table 4b have gauge theory descriptions with

simple gauge group G. As explained in section 2.2, a distinguished property of geometries

corresponding to gauge theories is that the matrix of intersection numbers (2.15) of holo-

morphic fiber classes fi with the surfaces Si is equal to (minus) the Cartan matrix of the

gauge algebra. We remark here that the Hirzebruch surface F0 has a base-fiber duality
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S1 ∪ S2 CS1 CS2

P2 ∪ F3 & E

P2 ∪ F6 2& E

(a) Endpoint geometries with M = 0.

(n1, n2) CS1 G (n1, n2) CS1 G

(0, 2) F SU(3)1 (0, 8) F + 3H SU(3)7, G2

(0, 4) F +H SU(3)3 (1, 1) E SU(3)0

(0, 6) F + 2H SU(3)5, Sp(2)π (1, 7) 2F +H SU(3)6

(b) Endpoint geometries with M = 1. Here CS2 = E. These geometries have gauge
theory descriptions with gauge group G = SU(3)k, Sp(2)θ, G2 where k is the classical CS
level and θ is the Z2-valued θ angle.

(n1, n2) CS1 G Endpoint

(1, 2) F SU(2)×̂SU(2) P2 ∪ F3

(1, 3) H SU(3)2 P2 ∪ F3

(1, 5) F +H SU(3)4 P2 ∪ F6

(1, 6) 2H Sp(2)0 P2 ∪ F6

(2, 4) H SU(3)1 ·
(0, 10) F + 4H SU(3)9 ·

(c) Other geometries of Fn1 ∪ Fn2 . The first four are not endpoints and flow to
geometries in (a) by mass deformations. (2, 4) is an endpoint, but is also equiv-
alent to (0, 4) by a HW transition. (0, 10) is an endpoint, but not shrinkable.

Table 4. Classification of all rank 2 geometries with M = 0, 1.

exchanging the base curve class H and the fiber curve class F . Geometrically, this is an

isomorphism between two geometries related by the exchange of H and F . It is possible

that the dual geometry often has different gauge theory realization from the gauge theory

of the original geometry. In this case, the geometric duality leads to a duality between two

different gauge theories.

Aside from studying the Cartan matrices, we can also compare the triple intersection

polynomial J3 to the perturbative expression for the prepotential given in (2.2). For the

geometries in table 4b and 4c, the prepotentials are

6F = J3 = 8φ3
1 + 3φ1φ2(−n2φ1 + (n2 − 1)φ2) + 8φ3

2 . (4.12)

We can compare these prepotentials against known gauge theory prepotentials as a means

to identify the corresponding gauge theories.
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⊗ ⊗⊗

⊗

⊗⊗

⊗

⊗

F0 ∪ F2 F0 ∪ F4 F0 ∪ F6

F1 ∪ F1 F1 ∪ F3

F1 ∪ F7

F1 ∪ F5

F1 ∪ F2 F1 ∪ F6

Figure 8. Brane configurations of rank 2 SCFTs with M = 1.

Let us first select the respective fibers H,F for F0 ∪ Fn2 , and F, F for F1 ∪ Fn2 . The

Cartan matrix Aij of the following geometries computed using these fiber classes is that of

the gauge algebra SU(3) as

(ASU(3))ij : (n1, n2) = (0, 2) , (0, 4) , (0, 6) , (0, 8) , (1, 1) , (1, 7) , (4.13)

for the choices of degrees (n1, n2) of Fn1 ∪ Fn2 . Moreover, their triple intersections agree

with gauge theory prepotentials of SU(3)k listed in table 4b. Therefore, we expect that

these endpoint geometries have SU(3)k gauge theory realizations.

The geometries (0, 6) and (0, 8) are particularly interesting, as they have two different

gauge theory descriptions related by the base-fiber exchange of F0. When we consider the

fibers classes to be F, F , the two geometries (0, 6), (0, 8) exhibit (respectively) Sp(2), G2

Cartan matrices. On the other hand, if we choose fiber classes H,F , the geometries exhibit

the SU(3) Cartan matrix in both cases.

Studying triple intersection numbers gives us a means to narrow down the precise

gauge theory that corresponds to these geometries. The triple intersection polynomial J3

of the geometry (0, 6) is identical to the prepotentials of both pure SU(3)5 gauge theory and

also pure Sp(2)θ theory, which can have either θ = 0 or θ = π. However, the prepotential

cannot distinguish two Sp(2) cases. We can instead determine the θ angle using the known

duality between SU(3) and Sp(2). In [22], it was conjectured that SU(3)5 is dual to Sp(2)π.

This suggests that the geometry (0, 6) corresponds to Sp(2)π while (1, 6) corresponds to

Sp(2)0. Thus, the geometric construction provides yet additional evidence supporting the

duality between the SU(3)5 and Sp(2)π gauge theories.
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P2 ∪ F3

F1 ∪ F3

F1 ∪ F2

⊗

P2 ∪ F6

⊗

⊗

F1 ∪ F6

⊗

F1 ∪ F5

⊗

P2 ∪ Bl1F6

P2 ∪ Bl1F3

Figure 9. Geometric transitions from P2 ∪ F3 and P2 ∪ F6 to F1 ∪ Fn’s with n = 2, 3, 5, 6.

As another example of a duality between gauge theories, the triple intersections of

(0, 8) agree with the prepotentials of SU(3)7 and G2 gauge theories. We thus conjecture

that SU(3)7 and G2 theories are dual and describe the low energy physics of the SCFT

corresponding to F0 ∪ F8.

Additional (not necessarily endpoint) geometries of type Fn1 ∪ Fn2 are displayed in

table 4c. The first five geometries in table 4c are shrinkable. However, the first four

geometries of these are not endpoints. They all can be obtained from other endpoint

geometries, P2 ∪ F3 or P2 ∪ F6, by blowing up a point and performing flop transitions;

see figure 9 for more details. We find that these geometries but (1, 2) have gauge theory

descriptions as listed in table 4c. The geometry (1, 2) has gauge algebra SU(2)×̂SU(2)

where ×̂ denotes that we gauge the SU(2) global symmetry of another SU(2) gauge theory

which arises from the U(1)I instanton symmetry in the IR gauge theory.

The geometry (2, 4) in table 4c is an endpoint geometry admitting no additional rank

preserving mass deformations. However, this geometry is equivalent to another endpoint
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geometry (0, 4) by a complex structure deformation, or a Hanany-Witten transition. Thus

these two geometries belong to the same physical equivalence class.

Lastly, the geometry (0, 10) is not shrinkable. This geometry satisfies all other shrink-

ablity conditions, but we find that no 4-cycles have nonzero volume at any point in the

Kähler cone. Thus (0, 10) is not shrinkable unless we make a non-normalizable Kähler

deformation. This means the corresponding field theory possesses an intrinsic energy scale

set by the Kähler parameter of the non-compact 4-cycle. Therefore, we do not expect that

this geometry corresponds to a 5d SCFT. Indeed, in section 4.2, we will argue that this

geometry gives a 5d KK theory.

We have finished the full classification of rank 2 endpoint geometries (thus rank 2

endpoint SCFTs), which have M = 0, 1. The result is rather surprising — we observe

that all rank 2 SCFTs are actually realized by gauge theories and their mass deformations.

Note that geometries P2∪F3 and P2∪F6 corresponding to non-Lagrangian theories can also

viewed as deformations of geometries which admit gauge theory descriptions, for example

(respectively) F1 ∪ F2 and F1 ∪ F5. This seems to suggest that gauge theory descriptions

are generally quite useful, even for 5d SCFTs of higher rank.

Furthermore, all geometries in table 4 except for (1, 2) were already predicted in [13]

using perturbative gauge theory analysis. In fact these geometric constructions confirm all

predictions with r = 2 and M = 1 in [13] except for SU(3)8. It was conjectured in [13] that

the SU(3)8 theory exists and has an interacting UV fixed point. However, the existence of

this theory appears to be ruled out by our geometric classification.

Let us briefly discuss the geometry of the SU(3)8 gauge theory. This theory in fact has

a geometric realization as the local 3-fold with Kähler surface F1 ∪ F9, where we identify

the 2-cycles CS1 = 3F1 + H1 and CS2 = E2. However, this geometry is not shrinkable

because at least one 2-cycle contained in S has negative volume. For example, the volumes

vol(E1) = φ1 − 3φ2 , vol(F2) = 2φ2 − φ1 (4.14)

with φ1,φ2 > 0 cannot be both non-negative. Therefore the Coulomb branch of this

geometry is trivial and this geometry is not shrinkable. In order to make the geometry

shrinkable we need to attach a non-compact 4-cycle with non-zero Kähler parameter

corresponding to bare gauge coupling constant 1/g2. This Kähler parameter cannot be

tuned to zero while maintaining positivity of the Kähler metric. So even though the IR

gauge description with 1/g2 0= 0 makes sense geometrically, we cannot take the 1/g2 = 0

limit without taking the Coulomb branch parameter to 0. This means that if the point

1/g2 = 0 is a CFT point, then it has no Coulomb branch deformation, and thus in conflict

with a SCFT from this gauge theory based on our assumptions. Thus we do not expect

that this geometry has a CFT limit. The gauge theory analysis in [13] uses only the

perturbative spectrum and monopole tensions and thus cannot capture the spectrum of

M2-branes wrapping the curve E1 ⊂ F1 (which correspond to instantons in the gauge

theory). Missing non-perturbative states such as these are crucial for assessing whether

or not a geometry is shrinkable. This again shows that the perturbative constraints used

in [13] are necessary but not sufficient to guarantee the existence of CFT fixed points.
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Full rank 2 classification. We showed in the previous section that our classification

program can be reduced to a classification of the following types of geometric configura-

tions: Blp1Fn∪dPp2 and Blp1Fn∪F0. As already discussed p2 and p1 are bounded above by

pmax(n), which we note depends upon both the degree n and the type of gluing configura-

tion. However, we are still faced with the problem of restricting the range of (non-negative)

integer n for which there exist shrinkable configurations. It turns out that some necessary

conditions of shrinkability allows us to derive a crude bound on n. From a physical per-

spective, the existence of such a bound is not surprising as it is closely tied to the existence

of only a finite number of 5d interacting fixed CFT points for a fixed rank.

Appropriate bounds on n can be determined in the two separate cases of S2 = dPp2

or S2 = F0. For both cases, we need only consider n ≥ 2, since setting n = 0, 1 produces

a geometric configuration isomorphic to dPp1+1 ∪ dPp2 . In the case of S2 = dP2, we find

that n ≤ 7, while in the case of S2 = F0, we find that n ≤ 8. See appendix B for proofs of

these bounds.

We present our classification of rank 2 Kähler surfaces associated to 5d UV interacting

fixed points in figures 10–27. These results are organized by the number of mass parameters

M , with 0 ≤ M ≤ 11. Given M > 0 mass parameters, a shrinkable geometry with M − 1

mass parameters may be obtained by performing a blowdown of an exceptional divisor

(possibly after a sequence of flops) in the surface S; in the associated field theory, blowing

down an exceptional curve corresponds to integrating out a massive matter hypermultiplet.

In each figure, we list the Kähler surface S = S1

CS2∪ S2, where CS2 = (S1 ∩ S2)S2

is the curve along which the two surfaces are glued, restricted to the second surface S2.

Geometries marked with (·)∗ correspond to 5d KK theories. Beneath each geometry, we

also list the associated gauge theory; geometries with no associated gauge system indicated

do not admit a known description as a gauge theory.

Our method for identifying gauge theoretic descriptions involves comparing the triple

intersection J3 with the gauge-theoretic prepotential 6F in (2.2) for given gauge group

and matter content in the Kähler cone, as well as identifying a geometric realization of the

Cartan matrix of associated to the gauge algebra.

The Cartan matrices are determined up to sign by a choice of fibers17 f1 ⊂ S1, f2 ⊂ S2

satisfying

(fi · Sj)Si = −(AG)ij . (4.15)

Geometrically, these fibers are rational curves over which M2-branes may be wrapped to

give rise to charged BPS vectors in the 5d spectrum. In figures 10–27, we indicate to the

left of each gauge description a possible choice of fibers giving rise to stated gauge algebra.

We merely list all possible gauge theory descriptions and do not attempt to list all possible

configurations of fibers. When there is more than one choice of fiber leading to different

Cartan matrices (and hence different gauge symmetries), there are dualities between the

associated gauge theory descriptions. For dPp2<8, the possible fibers are (using the same

17In the present discussion, a fiber is a rational curve f with self intersection f2 = 0.
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notation as in (4.4))

(1; 1) , (2; 14) , (3; 2, 16) , (4; 23, 14) , (5; 26, 1). (4.16)

The list of possible fibers in Blp1Fn is significantly more complicated; see appendix A.2.3.

We also note that the double arrows connecting pairs of different geometries S indicate

flop transitions mapping the geometries into one another. Each figure contains several clus-

ters of geometries connected by arrows, with each cluster belonging to the same birational,

and thus physical, equivalence class. Arrows decorated with the symbol φ1 ↔ φ2 indicate

that the flop transition requires us to reverse our identifications S1 ↔ S2, and flip the sign

of the Chern-Simons level, k → −k.

Finally, we remark that the gluing curves CS2 ∈ dPp2≥3 are only listed up to the action

of the Weyl group W (Ep2). Said differently, each choice of gluing curve displayed in the

figures is a single element in the Weyl orbit. We now briefly describe the Weyl group action

in dPp2 and explain why in most cases we only need to distinguish geometric configurations

whose gluing curves belong to the same Weyl orbit in a given surface. Given a simple root

αi = Xi −Xi+1, i = 1, . . . , p2 − 1, and an effective curve

C = d&−miXi, (4.17)

the Weyl reflections wαi act by transposing exceptional divisors, Xi ↔ Xi+1, while the

reflection wαp2
associated to the root αp2 = &−

∑3
i=1Xi acts on C as follows:

wαp2
(C) = (2d−m1 −m2 −m3)&− (d−m2 −m3)X1 − (d−m1 −m3)X2

− (d−m1 −m2)X3 −
∑

i>3

miXi.
(4.18)

As was shown in [34], the action of W (Ep2) on a rational curve C ∈ dPp2 for p2 ≥ 4 and

degree dC ≡ −K ·C = C2+2 = n in all cases studied in this paper is transitive. Therefore,

since the Weyl action wα : C 7→ C + (C · α)C preserves intersection products,

C · C ′ = (C + (C · α)α) · (C ′ + (C ′ · α)α), (4.19)

it is sufficient to set the gluing curve CS2 equal to a single element of the Weyl orbit in

order to understand the full intersection structure, as the intersection numbers are identical

up to permutation for any two elements belonging to the same Weyl orbit. For p2 < 3, the

Weyl group either has multiple orbits (as in the case of p2 = 3) or is otherwise undefined

(as in the case of p2 < 3), and so for p2 < 4 we only list gluing curves CS2 up to cyclic

permutations of the exceptional divisors Xi.

Upon mass deforming these SCFTs and flowing to the IR we get a tree of relations

between these conformal theories which is summarized in the RG flow tree diagram in

figure 16. The top theories of the RG families are related to 5d KK theories which are

discussed in the next section.
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(Bl10F6
2$
∪ dP1)∗

F, &−X1 Sp(2) + 10F

H + 2F −
∑

Xi, &−X1 Â1

(Bl9F5
2$−X1∪ dP2)∗

F, &−X1 SU(3)0 + 10F

F, &−X2 Sp(2) + 10F

H + 2F −
∑

Xi, &−X2 Â1

(Bl10F6
F+2E
∪ F0)∗

F, F Sp(2) + 10F

F,E SU(3)0 + 10F

H + 2F −
∑

Xi, F Â1

(Bl8F4

2$−
∑2

i=1 Xi

∪ dP3)∗

F, &−X1 SU(3)0 + 10F

F, &−X3 Sp(2) + 10F

H + 2F −
∑

Xi, &−X3 Â1

(Bl7F3

2$−
∑3

i=1 Xi

∪ dP4)∗

F, &−X1 SU(3)0 + 10F

F, &−X4 Sp(2) + 10F

H + 2F −
∑

Xi, &−X4 Â1

(Bl6F2

2$−
∑4

i=1 Xi

∪ dP5)∗

F, &−X1 SU(3)0 + 10F

F, &−X5 Sp(2) + 10F

H −X1 −X2, 2&−
∑4

i=1Xi [SU(2) + 4F]× [SU(2) + 4F]

H + 2F −
∑

Xi, &−X5 Â1

(Bl5F1

2$−
∑5

i=1 Xi

∪ dP6)∗

F, &−X1 SU(3)0 + 10F

F, &−X6 Sp(2) + 10F

f1 · E = 0, 2&−
∑5

i=2Xi [SU(2) + 4F]× [SU(2) + 4F]

f1 · E = 2, &−X6 Â1

Figure 10. M = 11 geometries.
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Bl9F6
2$
∪ dP1

F, &−X1 Sp(2) + 9F

Bl8F5
2$−X1∪ dP2

F, &−X1 SU(3) 1
2
+ 9F

F, &−X2 Sp(2) + 9F

Bl9F6
F+2E
∪ F0

F, F Sp(2) + 9F

F,E SU(3) 1
2
+ 9F

Bl7F4

2$−
∑2

i=1 Xi

∪ dP3

F, &−X1 SU(3) 1
2
+ 9F

F, &−X3 Sp(2) + 9F

Bl6F3

2$−
∑3

i=1 Xi

∪ dP4

F, &−X1 SU(3) 1
2
+ 9F

F, &−X4 Sp(2) + 9F

Bl5F2

2$−
∑4

i=1 Xi

∪ dP5

F, &−X1 SU(3) 1
2
+ 9F

F, &−X5 Sp(2) + 9F

H −X1 −X2, 2&−
∑4

i=1Xi [SU(2) + 3F]× [SU(2) + 4F]

Bl4F1

2$−
∑5

i=1 Xi

∪ dP6

F, &−X5 SU(3) 1
2
+ 9F

F, &−X6 Sp(2) + 9F

f1 · E = 0, &−X6 [SU(2) + 3F]× [SU(2) + 4F]

Bl10F6
2$
∪ P2

(Bl9F4
F+E
∪ F0)∗

F,E SU(3)− 3
2
+ 9F

H + 2F −
∑8

i=1Xi, E Sp(2) + 8F+ 1AS

Bl9F5
2$−X1∪ dP1

F, &−X1 SU(3)− 1
2
+ 9F

H + 2F −
∑

Xi, &−X1 Sp(2) + 9F

Bl8F4

2$−
∑2

i=1 Xi

∪ dP2

F, &−X1 SU(3)− 1
2
+ 9F

H + 2F −
∑

Xi, &−X1 Sp(2) + 9F

Bl7F3

2$−
∑3

i=1 Xi

∪ dP3

F, &−X1 SU(3)− 1
2
+ 9F

H + 2F −
∑

Xi, &−X1 Sp(2) + 9F

Bl6F2

2$−
∑4

i=1 Xi

∪ dP4

F, &−X1 SU(3)− 1
2
+ 9F

H + 2F −
∑

Xi, &−X1 Sp(2) + 9F

H −X1 −X2, 2&−
∑

Xi [SU(2) + 4F]× [SU(2) + 3F]

φ1 ↔ φ2

Figure 11. M = 10 geometries.
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Bl9F6
2$
∪ P2

Bl8F5
2$−X1∪ dP1

F, &−X1 SU(3)0 + 8F

Bl7F4

2$−
∑2

i=1 Xi

∪ dP2

F, &−X1 SU(3)0 + 8F

Bl6F3

2$−
∑3

i=1 Xi

∪ dP3

F, &−X1 SU(3)0 + 8F

Bl5F2

2$−
∑4

i=1 Xi

∪ dP4

F, &−X1 SU(3)0 + 8F

H −X1 −X2, 2&−
∑

Xi [SU(2) + 3F]× [SU(2) + 3F]

Bl4F1

2$−
∑5

i=1 Xi

∪ dP5

F, &−X1 SU(3)0 + 8F

f1 · E = 0, 2l −
∑4

i=1Xi [SU(2) + 3F]× [SU(2) + 3F]

Bl8F3
$
∪ dP1

F, &−X1 SU(3)−2 + 8F

H + 2F −
∑7

i=1Xi, &−X1 Sp(2) + 7F+ 1AS

Bl8F6
2$
∪ dP1

F, &−X1 Sp(2) + 8F

Bl7F5
2$−X1∪ dP2

F, &−X1 SU(3)1 + 8F

F, &−X2 Sp(2) + 8F

Bl8F6
F+2E
∪ F0

F, F Sp(2) + 8F

F,E SU(3)1 + 8F

Bl6F4

2$−
∑2

i=1 Xi

∪ dP3

F, &−X1 SU(3)1 + 8F

F, &−X3 Sp(2) + 8F

Bl5F3

2$−
∑3

i=1 Xi

∪ dP4

F, &−X1 SU(3)1 + 8F

F, &−X4 Sp(2) + 8F

Bl4F2

2$−
∑4

i=1 Xi

∪ dP5

F, &−X1 SU(3)1 + 8F

F, &−X5 Sp(2) + 8F

H −X1 −X2, 2&−
∑4

i=1Xi [SU(2) + 2F]× [SU(2) + 4F]

Bl3F1

2$−
∑5

i=1 Xi

∪ dP6

F, &−X1 SU(3)1 + 8F

F, &−X6 Sp(2) + 8F

f1 · E = 0, 2&−
∑4

i=1Xi [SU(2) + 2F]× [SU(2) + 4F]

Bl8F4
F+E
∪ F0

F, F SU(3)−1 + 8F

H + 2F −
∑

Xi, F Sp(2) + 8F

Bl7F3
$
∪ dP2

F, &−X1 SU(3)−1 + 8F

H + 2F −
∑

Xi, &−X1 Sp(2) + 8F

Bl6F2
$−X1∪ dP3

F, &−X1 SU(3)−1 + 8F

H + 2F −
∑

Xi, &−X2 Sp(2) + 8F

H −X1 −X2, &−X1 [SU(2) + 4F]× [SU(2) + 2F]

φ1 ↔ φ2

Figure 12. M = 9 geometries.
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Bl7F6
2$
∪ dP1

F, &−X1 Sp(2) + 7F

Bl6F5
2$−X1∪ dP2

F, &−X1 SU(3) 3
2
+ 7F

F, &−X2 Sp(2) + 7F

Bl7F6
F+2E
∪ F0

F, F Sp(2) + 7F

F,E SU(3) 3
2
+ 7F

Bl5F4

2$−
∑2

i=1 Xi

∪ dP3

F, &−X1 SU(3) 3
2
+ 7F

F, &−X3 Sp(2) + 7F

Bl4F3

2$−
∑3

i=1 Xi

∪ dP4

F, &−X1 SU(3) 3
2
+ 7F

F, &−X4 Sp(2) + 7F

Bl3F2

2$−
∑4

i=1 Xi

∪ dP5

F, &−X1 SU(3) 3
2
+ 7F

F, &−X5 Sp(2) + 7F

H −X1 −X2, 2&−
∑4

i=1Xi [SU(2) + 1F]× [SU(2) + 4F]

Bl2F1

2$−
∑5

i=1 Xi

∪ dP6

F, &−X1 SU(3) 3
2
+ 7F

F, &−X6 Sp(2) + 7F

f1 · E = 0, 2l −
∑4

i=1Xi [SU(2) + 1F]× [SU(2) + 4F]

Bl7F3
$
∪ dP1

F, &−X1 SU(3)− 3
2
+ 7F

H + 2F −
∑

Xi, &−X1 Sp(2) + 7F

Bl6F2
$−X1∪ dP2

F, &−X2 SU(3)− 3
2
+ 7F

H + 2F −
∑

Xi, &−X2 Sp(2) + 7F

H −X1 −X2, &−X1 [SU(2) + 4F]× [SU(2) + 1F]

φ1 ↔ φ2

Bl8F6
2$
∪ P2

Bl7F5
2$−X1∪ dP1

F, &−X1 SU(3) 1
2
+ 7F

Bl6F4

2$−
∑2

i=1 Xi

∪ dP2

F, &−X1 SU(3) 1
2
+ 7F

Bl5F3

2$−
∑3

i=1 Xi

∪ dP3

F, &−X1 SU(3) 1
2
+ 7F

Bl4F2

2$−
∑4

i=1 Xi

∪ dP4

F, &−X1 SU(3) 1
2
+ 7F

H −X1 −X2, 2&−
∑

Xi [SU(2) + 2F]× [SU(2) + 3F]

Bl3F1

2$−
∑5

i=1 Xi

∪ dP5

F, &−X1 SU(3) 1
2
+ 7F

f1 · E = 0, 2&−
∑4

i=1Xi [SU(2) + 2F]× [SU(2) + 3F]

Bl7F2
E
∪ F0

F, F SU(3)− 5
2
+ 7F

H −X1 −X2, E [SU(2) + 5F]× SU(2)π

H + 2F −
∑6

i=1Xi, F Sp(2) + 6F+ 1AS

Bl8F3
$
∪ P2

Bl7F4
F+E
∪ F0

F, F SU(3)− 1
2
+ 7F

Bl6F3
$
∪ dP2

F, &−X1 SU(3)− 1
2
+ 7F

Bl5F2
$−X1∪ dP3

F, &−X1 SU(3)− 1
2
+ 7F

H −X1 −X2, &−X1 [SU(2) + 3F]× [SU(2) + 2F]

φ1 ↔ φ2

Figure 13. M = 8 geometries. (See footnote 18 for a comment about Bl8F3 ∪ P2.)
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Bl6F6
2$
∪ dP1

F, &−X1 Sp(2) + 6F

Bl5F5
2$−X1∪ dP2

F, &−X1 SU(3)2 + 6F

F, &−X2 Sp(2) + 6F

Bl6F6
F+2E
∪ F0

F, F Sp(2) + 6F
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Figure 14. M = 7 geometries.
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Figure 15. M = 7 geometries, cont.
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Figure 16. The diagram above shows the RG flow among rank 1 and rank 2 SCFTs obtained by
mass deformations. The first and the second rows in each box correspond to the geometric and the
gauge theoretic descriptions respectively of a 5d theory.18 The parent theory in each branch is a
5d KK theory related to a 6d theory on S1.

18We note that while Bl8F3 ∪ P2 has no gauge theory description, it is nonetheless related to [SU(2) +

5F] × SU(2)0 by a flop transition: a flop of Bl8F3 ∪ P2 leads to the geometry Bl7F2

!−X1∪ dP1, which has

gauge theory description [SU(2) + 5F]× SU(2)0. However, Bl7F2

!−X1∪ dP1 is not shrinkable, which implies

that the BPS spectrum of the gauge theory will develop a negative mass before reaching a CFT fixed point.

Nevertheless, this gauge theory makes sense as an effective description of the CFT from Bl8F3 ∪P2 through

a flop transition to Bl7F2

!−X1∪ dP1 when mass parameters are turned on. We are greatful to Gabi Zafrir

for pointing out that the CFT related to the [SU(2) + 5F] × SU(2)0 gauge theory should exist since an

associated (p, q) 5-brane system exists.
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Figure 17. M = 6 geometries.
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Figure 18. M = 6 geometries, cont.
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Figure 19. M = 5 geometries.
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Figure 20. M = 5 geometries, cont.
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Figure 21. M = 4 geometries.
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Figure 22. M = 4 geometries, cont.
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F,E SU(3)4 + 2F

F4

2$−
∑2

i=1 Xi

∪ dP3

F, &−X1 SU(3)4 + 2F

F, &−X3 Sp(2) + 2F

Bl2F4
F+E
∪ F0

F, F SU(3)2 + 2F

Bl1F3
$
∪ dP2

F, &−X1 SU(3)2 + 2F

F2
$−X1∪ dP3

F, &−X1 SU(3)2 + 2F

Figure 23. M = 3 geometries.
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dP2
$−X1−X2∪ dP2

&−X1, &−X1 SU(2)0 × SU(2)0
Bl3F3

$
∪ P2

Bl2F2
$−X1∪ dP1

H −X1 −X2, &−X1 SU(2)π × SU(2)0

Bl1F1
$−X1−X2∪ dP2

f1 · E = 0, &−X1 SU(2)π × SU(2)0

Bl2F2
E
∪ F0

F, F SU(3)0 + 2F

H −X1 −X2, E SU(2)π × SU(2)π

Bl1F1
X1∪ dP2

F, &−X1 SU(3)0 + 2F

f1 · E = 0, &−X2 SU(2)π × SU(2)π

F5
2$−X1∪ dP3

F, &−X1 SU(3)5 + 2F

F, &−X2 Sp(2) + 1F+ 1AS

F6
2$
∪ dP3

F, &−X1 Sp(2)0 + 2AS

Bl2F3
$
∪ dP1

F, &−X1 SU(3)1 + 2F

Bl1F2
$−X1∪ dP2

F, &−X2 SU(3)1 + 2F

F1
$−X1−X2∪ dP3

F, &−X3 SU(3)1 + 2F

F6
3$−2X1−X2∪ dP3

F, &−X2 Sp(2)π + 2AS

F, &−X1 SU(3)6 + 2F

F, &−X3 G2 + 2F

Figure 24. M = 3 geometries, cont. Note that for the geometry dP2 ∪ dP2 at the top, the gluing
curves in both surfaces are C = &−X1 −X2, in contrast to the other geometries.
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Bl2F6
2$
∪ P2

Bl1F5
2$−X1∪ dP1

F, &−X1 SU(3) 7
2
+ 1F

F4

2$−
∑2

i=1 Xi

∪ dP2

F, &−Xj=1,2 SU(3) 7
2
+ 1F

Bl1F6
2$
∪ dP1

F, &−X1 Sp(2) + 1F

F5
2$−X1∪ dP2

F, &−X1 SU(3) 9
2
+ 1F

F, &−X2 Sp(2) + 1F

Bl1F6
F+2E
∪ F0

F, F Sp(2) + 1F

F,E SU(3) 9
2
+ 1F

Bl1F4
F+E
∪ F0

F, F SU(3) 5
2
+ 1F

F3
$
∪ dP2

F, &−X1 SU(3) 5
2
+ 1F

Bl2F3
$
∪ P2 Bl1F2

$−X1∪ dP1

Bl1F2
E
∪ F0

F, F SU(3) 1
2
+ 1F

F1
X1∪ dP2

F, &−X1 SU(3) 1
2
+ 1F

F1
$−X1−X2∪ dP2

F7
3$−2X1∪ dP2

F, &−X1 SU(3) 13
2
+ 1F

F, &−X2 G2 + 1F

F6
2$
∪ dP2

F, &−X1 Sp(2)0 + 1AS

F6
3$−2X1−X2∪ dP2

F, &−X1 SU(3) 11
2
+ 1F

F, &−X2 Sp(2)π + 1AS

Bl1F3
$
∪ dP1

F, &−X1 SU(3) 3
2
+ 1F

F2
$−X1∪ dP2

F, &−X2 SU(3) 3
2
+ 1F

Figure 25. M = 2 geometries.
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Bl1F6
2$
∪ P2

F5
2$−X1∪ dP1

F, &−X1 SU(3)4
Bl1F3

$
∪ P2 F2

$−X1∪ dP1

F2b

F+(b−1)E
∪ F0

b = 1 F,E SU(3)1

b = 2 F, F SU(3)3

b = 3 F,E SU(3)5

b = 3 F, F Sp(2)π

b = 4 F,E SU(3)7

b = 4 F, F G2

b = 5 F,E SU(3)9

b = 5 F, F A(2)
2

F3
$
∪ dP1

F, &−X1 SU(3)2

F6
2$
∪ dP1

F, &−X1 Sp(2)0

F1
X1∪ dP1

F, &−X1 SU(3)0

F7
3$−2X1∪ dP1

F, &−X1 SU(3)6

Figure 26. M = 1 geometries.

F3
$
∪ P2 F6

2$
∪ P2

Figure 27. M = 0 geometries.

6d theories on a circle. In this section we show that the complicated web of theories we

have uncovered are actually unified from the perspective of 5d Kaluza-Klein (KK) theories

arising from 6d SCFTs compactified on a circle (up to possible automorphism twists and

holonomies).

As discussed in section 4.1, shrinkable rank 1 geometries are classified by del Pezzo

surfaces dPn≤8 and F0 up to physical equivalence. Interestingly, all of them can be obtained

via geometric RG flows from dP9 (equivalently, 1
2K3). The local dP9 model is an elliptic 3-

fold engineering the 6d SCFT called the ‘E-string theory’. Therefore all rank 1 5d SCFTs

are descendants (i.e. related by rank preserving mass deformations) of the 6d E-string

theory compactified on a circle.

We also find that all rank 2 5d SCFTs have 6d origin, but the rank 2 case is significantly

more elaborate than the rank 1 case. Geometric constructions produce 5d SCFTs belonging

to the four distinct families displayed in table 3. The geometries of type (·)∗ are not

shrinkable but rather 5d KK theories.19 We expect that these geometries correspond to 6d

SCFTs compactified on a circle, possibly with automorphism twists.

19These theories are also called marginal theories [13].
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One distinguished property of geometries corresponding to 5d KK theories is that

there must exist an elliptic curve class whose volume is not controlled by normalizable

Kähler moduli. The M2-branes wrapping this elliptic class correspond to KK momentum

states. For example, the canonical class −KdP9 ⊂ dP9 is an elliptic class with zero volume

associated to the KK momenta of the E-string theory compactified on a circle. Another

important property is that some KK geometries contain fiber classes forming an affine

gauge algebra. Namely, we can find fiber classes fi such that

− fi · Sj = (AĜ)ij , (4.20)

where Ĝ denotes an affine gauge algebra. This signals that the corresponding geometry

is an elliptic geometry realizing a 5d KK theory. We will now identify 6d origins of the

geometries in table 3 using these properties.

We begin with Bl10F6 ∪ F0. This geometry has two gauge theory descriptions, namely

SU(3)0 + 10F and Sp(2) + 10F. The 6d origin of these gauge theories is discussed in [21–

23, 35]. These theories are a circle reduction of the 6d (D5, D5) conformal matter theory

introduced in [2, 36]. The geometry Bl10F6 ∪ F0 realizes the circle compactification of

this 6d theory. This theory has another duality frame in which an affine gauge algebra is

manifest. To see this, choose the fiber classes f1 = H + 2F −
∑10

i=1Xi and f2 = F . These

fiber classes indeed form the affine Â1 Cartan matrix:

− (fi · Sj) =

(
2 −2

−2 2

)
. (4.21)

Another geometry F2 ∪ dP7 is interesting for similar reasons. This geometry admits

three different gauge theory descriptions corresponding to the following choices of fiber

classes:
f1 = F, f2 = &−X2 → SU(3)4 + 6F ,

f1 = F, f2 = 2&−
5∑

i=2

Xi → Sp(2) + 2AS+ 4F ,

f1 = F, f2 = 3&−
6∑

i=2

Xi − 2X7 → G2 + 6F .

(4.22)

Here, the two surfaces are glued along the curves CS1 = E and CS2 = &−X1. This implies

new dualities between these three gauge theories and their descendants obtained by RG-

flows induced by relevant mass deformations. In addition, we find another distinct duality

frame:

f1 = F , f2 = 5&−X1 − 2
7∑

i=2

Xi . (4.23)

The fiber classes in this last frame form the affine Cartan matrix A(2)
2 :

− (fi · Sj) =

(
2 −1

−4 2

)
. (4.24)
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This algebra A(2)
2 is obtained by an outer automorphism twist of the affine A(1)

2 = Â2

algebra which identifies 3 and 3̄ representations in A2 ⊂ Â2. Therefore, one can expect that

this geometry is also a KK geometry corresponding to a 6d SU(3) gauge theory compactified

on a circle with an outer automorphism twist. The unique 6d theory satisfying these

properties is the 6d N = (1, 0) SCFT with SU(3) gauge group and NF = 12 fundamental

hypermultiplets. Circle compactification of this 6d theory with an outer automorphism

twist of the SU(3) gauge algebra leads to a 5d theory with affine A(2)
2 gauge algebra and

6 flavors. This interpretation agrees with the geometric model F2 ∪ dP7. Therefore, we

conclude that F2 ∪ dP7 is a ‘KK geometry’ engineering the circle compactification of the

6d SU(3) theory with NF = 12.

F6 ∪ dP4 is also a KK geometry. When one chooses the fiber classes f1 = F1, f2 =

&−X1 (with the gluing curve CS2 = 2&), this geometry has a gauge theory description as

Sp(2)0 + 3AS. However, if we choose the fiber classes f1 = F, f2 = 2& −
∑4

i=1Xi, their

intersections with the irreducible components Si form the affine A(2)
2 Cartan matrix, up to

sign. This suggests that F6 ∪ dP4 is a KK geometry. Indeed we find that the 6d SU(3)

gauge theory with NF = 6 can give rise to the 5d KK theory associated to this geometry

upon circle reduction with an outer automorphism twist.

F10∪F0 is yet another KK geometry constructed by our building blocks. This geometry

admits two dual descriptions related to the base-fiber exchange symmetry of F0. One

description is SU(3)9, while the other is the A(2)
2 gauge theory description without matter

hypermultiplets. We anticipate that this affine A(2)
2 gauge theory is the 5d KK theory

coming from the 6d theory O(−3) minimal SCFT with SU(3) gauge group compactified

on a circle with an outer automorphism twist of the SU(3) gauge algebra.

Lastly, Bl9F4 ∪ F0 is a KK geometry. This geometry is formed by gluing two surfaces

along CS1 = E in Bl9F4 and CS2 = F +H in F0. We find that this geometry involves an

elliptic fiber class given by E + 2X (with E2 = −4, X2 = −1, E ·X = 2) in Bl9F4 which

signals that this geometry is an elliptic CY 3-fold. In the 5d reduction, this geometry has

two gauge theory descriptions as predicted in [13]: SU(3) 3
2
with NF = 9 and Sp(2) with

NAS = 1, NF = 8. This geometry is associated to the 6d rank 2 E-string theory on a circle.

This becomes clearer after a flop transition with respect to the exceptional curve X. The

flop transition described in section 3.5 leads to dP9 ∪ Fg=1
0 geometry where we glue the

anticanonical class in dP9 to the elliptic class E (with E2 = 0) in Fg=1
0 . This is the rank 2

generalization of dP9 (or the 6d rank 2 E-string theory).

All top geometries in table 3 come from 6d SCFTs. We also claim that all smooth

rank 2 3-folds engineering 5d SCFTs belong to one of the RG-flow families exhibited in

table 3. Therefore, we deduce the following conclusion: All rank 2 5d SCFTs realized by

smooth non-compact 3-folds have 6d SCFT origins.

This is one of the most important lessons from our classification of rank 2 5d SCFTs.

The same conclusion may hold also for singular geometries involving O7+-planes. As men-

tioned earlier, the classification of smooth 3-folds misses a single geometry corresponding

to the theory SU(3) 1
2
+ 1Sym, despite the fact that this theory is known to have a brane

construction involving O7+-planes [33]. This theory may be the only rank 2 SCFT which
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cannot be engineered by a smooth 3-fold. But, we also know that this theory can be

obtained from a KK theory with 6d origin, so we have found no counterexamples to the

notion that all rank 2 5d SCFTs come from 6d SCFTs.

The above discussion motivates classifying automorphisms of 6d SCFTs which lead

to 5d KK theories, as in [16]. Given the fact that 6d SCFTs are already classified (not

counting frozen singularities involving O7+ planes), the possible automorphisms can be

deduced from symmetries of the tensor branch diagrams of 6d SCFTs dressed by gauge

symmetries which respect the automorphisms.
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A Mathematical background

A.1 Notation, conventions, and formulae

Let S be a smooth projective variety, and let a (real) 1-cycle be a formal linear combination

C =
∑

aiCi of irreducible, reduced and proper curves Ci with real coefficients ai. We

declare two 1-cycles C,C ′ to be numerically equivalent if C·D = C ′·D for all Cartier divisors

D on X. Let N1(S) be the real vector space of 1-cycles modulo numerical equivalence.

The Mori cone of S is defined to be the closure of the set

NE(S) =

{∑
ai[Ci] | ai ∈ R≥0

}
, (A.1)

where [Ci] are the classes of Ci in N1(S). Since we work exclusively with numerical equiv-

alence classes, we drop the bracket notation.

Given a local 3-fold X defined by a connected Kähler surface S = ∪Si, the Mori cone

of X is given by

NE(X) = ∪NE(Si). (A.2)

The Kähler cone K(X) is defined to be the closure of the set of all divisors J such that

J · C > 0 for all curves C that lie in the span of the Mori cone, where · is the intersection

product of the Chow ring ofX. Hence, given a basis J = φiDi, we may parametrize K(X) as

K(X) = {φ : −J · C ≥ 0}. (A.3)

Note that the Kähler cone is dual to the Mori cone of X in the sense of convex geometry.

The correspondence between 5d field theory and Calabi-Yau geometry described in

section 2.2 allows us to identify blowdowns with RG flows triggered by mass deformations.

As a consequence, it is necessary to consider not only minimal surfaces but also their
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blowups as the basic building blocks Si of shrinkable 3-folds. For this reason, we find it

useful to recall a few facts about the proper transform of the canonical class K of a surface

Si with respect to a blowup. Let π : S′ → S be a blowup of a collection of points pi in

general position with multiplicities mi and exceptional divisors Xi. Then the canonical

divisor KS′ of S′ is

KS′ = π∗(KS) +
∑

Xi. (A.4)

Moreover, if the points pi lie on a curve C ⊂ S, then the proper transform C ′ ⊂ S′ of the

curve C is

C ′ = π∗(C)−
∑

miXi, (A.5)

where mi is the multiplicity of C at pi [28]. In some situations, one is also forced to

consider self-glued surfaces S′. The self-glued surfaces we study can be obtained from non-

self-glued surfaces Si by identifying pairs of curves C1, C2 ⊂ Si, thus leading to a birational

map ρ : S → S′. The canonical class of S′ is then determined by

ρ∗(KS′) = KS + C1 + C2. (A.6)

A.2 Blowups of Hirzebruch surfaces, BlpFn≥2

In this appendix, we fix notation for Hirzebruch surfaces and their blowups at general

points. We also list their fiber classes and explicitly describe the generators of their Mori

cones. Significantly, we show that if the number of blowups exceeds pmax(n), then the Mori

cone of BlpFn is (countably) infinitely generated. In the context of shrinkable 3-folds, this

(roughly) implies the existence of an infinite dimensional discrete symmetry, which is not

expected for 5d SCFTs and hence excludes these surfaces from the list of building blocks

for shrinkable 3-folds.

A ruled surface Fg
n over a curve E of genus g can be realized as the projectivization of

a locally free rank 2 sheaf E with deg(E) = E2 = −n, following the notation of [28]. The

Mori cone of a ruled surface is spanned by two curve classes, namely the genus g curve E

and a fiber class F . The canonical divisor is

KFg
n
= −2E + (2g − 2− n)F (A.7)

up to numerical equivalence. When g = 0, F0
n = Fn is a Hirzebruch surface and can be

understood as the projectivization of the bundle O ⊕O(n) on P1. After projectivization,

the summands O and O(n) of O⊕O(n) correspond to sections which we denote by E and

H respectively. At the level of cohomology classes, we have H = E+nF . The intersection

numbers are

H2 = n, E2 = −n, F 2 = 0, H · E = 0, H · F = E · F = 1. (A.8)

The Mori cone of Fn is generated by E and F . The canonical class is given by

KFn = −2E − (n+ 2)F. (A.9)

Writing a curve class on Fn as C = aE + bF , we can use (A.9) to compute the genus of

the curve by the adjunction formula:

g(aE + bF ) = (a− 1)(b− 1)− na(a− 1)

2
. (A.10)
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A.2.1 Mori cones

Below we list the generators of Mori cones in Hirzebruch surfaces with p > 0 blowups

at generic points which we denote by BlpFn. These are particular classes spanning the

extremal rays in the Mori cone in the surface. These classes can be expressed as C =

dH + sF −
∑p

i=1 aiXi, which we abbreviate as (d, s; a1, a2, · · · , ap), where H2 = n, F 2 = 0

and Xi’s are exceptional classes of p blowups.

The Mori cone generators in BlpFn with 2 ≤ n ≤ 7 are

BlpF2 : E , Xi , (0, 1; 1) , (1, 0; 13) , (1, 1; 15) , (2, 0; 2, 15) ,

(1, 2; 17) , (2, 1; 22, 15) , (3, 0; 24, 13) , (3, 1; 26, 1) , (4, 0; 3, 26) (A.11)

BlpF3 : E , Xi , (0, 1; 1) , (1, 0; 14) , (1, 1; 16) , (1, 2; 18) , (2, 0; 22, 15) ,

(2, 1; 23, 15) , (3, 0; 27) , (3, 0; 3, 24, 13) , (3, 1; 3, 26, 1) ,

(4, 0; 34, 23, 1) , (4, 0; 4, 3, 26) , (4, 1; 35, 23) , (5, 0; 42, 34, 22) ,

(5, 1; 42, 36) , (6, 0; 46, 3, 2) , (6, 0; 5, 43, 34) , (6, 1; 47, 3) ,

(7, 0; 53, 44, 3) , (7, 0; 6, 47) , (8, 0; 6, 55, 42) , (9, 0; 64, 54) ,

(10, 0; 7, 67) (A.12)

BlpF4 : E , Xi , (0, 1; 1) , (1, 0; 15) , (1, 1; 17) , (2, 0; 23, 15) ,

(3, 0; 3, 27) (A.13)

BlpF5 : E , Xi , (0, 1; 1) , (1, 0; 16) , (1, 1; 18) , (2, 0; 24, 15) ,

(3, 0; 32, 27) , (4, 0; 39) (A.14)

BlpF6 : E , Xi , (0, 1; 1) , (1, 0; 17) , (1, 1; 19) , (2, 0; 25, 15) ,

(3, 0; 33, 27) , (4, 0; 4, 39) (A.15)

BlpF7 : E , Xi , (0, 1; 1) , (1, 0; 18) , (1, 1; 110) , (2, 0; 26, 15) ,

(3, 0; 34, 27) , (4, 0; 42, 39) , (5, 0; 411) (A.16)

Here the number of blowups is restricted as p ≤ pmax where pmax = 7, 8, 8, 9, 10, 11 for

n = 2, 3, 4, 5, 6, 7 respectively.

We are using the cone theorem of Mori theory: the Mori cone is generated by curves

with C ·K ≥ 0 (this is the ‘K-positive’ part of the Mori cone) and the extremal rational

curves of Mori theory. There are three types of extremal rational curves on surfaces: (i)

lines in P2, (ii) curves F with F 2 = 0 forming a P1-fibration, and (iii) exceptional curves.

Case (i) obviously does not occur. For case (ii), we claim that any rational curve F

with F 2 = 0 can be written as a sum of two exceptional curves. We conclude that the Mori

cone is generated by the curves C with C ·K ≥ 0 and the exceptional curves. To see this,

first note that the fibration which F is a part of must contain at least one reducible fiber.

Otherwise, we would have a P1 bundle, implying that BlpFn is itself a Hirzebruch surface,

which is impossible since we are assuming that p > 0. So we can write the class F = C1+C2

as a sum of two curve classes. Then C1 ∩ C2 is a single point, otherwise F would have

positive genus. Replacing F by a distinct fiber, we see that Ci · F = 0, since each Ci is

disjoint from the distinct fiber F . We then compute C1 ·F = C1 · (C1 +C2) = C2
1 +1 = 0,
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so C2
1 = −1 and C1 is an exceptional curve. The same argument shows that C2 is also an

exceptional curve, and the claim is proven.

We now claim that for p ≤ n + 4, the only curve C with C · K ≥ 0 is C = E. The

above table was produced by listing the exceptional curves and prepending E.

To prove the claim, we write −K in the form

−K = E +H + 2F −
p∑

i=1

Xi. (A.17)

We compute that E · (−K) = −n + 2. Let us first assume that n > 2, in which case

E · (−K) < 0. Now consider any effective curve C = ∪Ci in the class −K (for p ≤ pmax

there exist such curves by a straightforward dimension count). If each Ci were disjoint

from E, we would get a contradiction since Ci · E ≥ 0 is just a (nonnegative) count of

intersection points. Thus E must be one of components of any curve in the class −K.20

It follows that every curve in the class −K is the sum of E and a curve in the class of

what is left over: Mn = H + 2F −
∑p

i=1Xi.21 Curves in the class Mn move in a family

by a straightforward dimension count using the bound on p, hence curves in the class Mn

cover BlpF . Since M2
n = n+ 4− p ≥ 0, curves in the class Mn must intersect every curve

nontrivially, with one possible exception in the case p = n+4: a curve in the class Mn will

not meet a different curve in the class Mn, since M2
n = 0.

So if C 0= E, and C 0= Mn in the case p = n + 4, then C · (−K) = C · (E + Mn) =

C · E + C · Mn. The first term is nonnegative while the second term is positive, hence

C ·K < 0. If p = n + 4 and C = Mn, the we compute Mn ·K = −2 directly and there is

still no problem.

If n = 2, then −K moves in a family covering BlpF and has no fixed component. So

this case is handled by a similar but simpler argument.

In conclusion, the only curve C with C ·K ≥ 0 is C = E and the K-negative part of

the Mori cone of Blp>0Fn is generated exclusively by exceptional curves.

We checked numerically that, when p ≥ pmax, there appear infinitely many Mori cone

generators for each surface. We now explain that for p ≥ n+6, BlpFn has infinitely excep-

tional curves and therefore infinitely many Mori cone generators. We give the argument

for n = 2 for simplicity of exposition and then repeat the argument in the general case.

We now adapt the argument of [37] from P2 to Fn. We start by blowing up 4 general

points of F2 to obtain a surface Bl4F2. For each 1 ≤ j ≤ 4, consider the curve Yj =

H2−
∑4

i=1,i '=j Xi. The Yj are disjoint exceptional curves (Yj ·Yk = 0 for j 0= k) and so can

be blown down by a map π : Bl4F2 → S to a smooth surface S. We claim that S / Bl4F2,

producing a birational automorphism of F2 analagous to the quadratic transformation of

P2 used in [37].

To verify the claim, we begin by observing that E · Yj = 0, i.e. E is disjoint from each

Yj , so blowing down the Yj does not change the self-intersection of E. In other words, if we

put E′ = π∗(E), we have E′2 = −2. Furthermore, the curve class H + F −
∑4

i=1Xi (with

P1 moduli space) has self-intersection 0 and is disjoint from the curves Yj . So by the same

20In the standard terminology of algebraic geometry, E is called a fixed component of |−K|.
21In the standard terminology of algebraic geometry, Mn is called the moving part of −K, as it is

straightforward to check that Mn has no fixed component itself.
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reasoning, the curve class F ′ = π∗(H + F −
∑4

i=1Xi) satisfies (F ′)2 = 0. Furthermore,

E′ · F ′ = 1, since E · (H + F −
∑4

i=1Xi) = 1. Thus S has b2(S) = 2 + 4 − 4 = 2 and

contains a curve of self-intersection −2 which is a section of P1-fibration. By classification

of rational surfaces, we conclude that S is a Hirzebruch surface, and S / F2 because of

the presence of the curve E′.

We now change notation and rewrite π as π : Bl4F2 → F2, replacing E′ and F ′ by E

and F . We have

π∗(E) = E, π∗(F ) = H + F −
4∑

i=1

Xi, π∗(Xi) = H −
4∑

j=1, j '=i

Xi. (A.18)

We now turn to BlpF2 with p ≥ 8 > 4. Since the blowups of the points indexed by

5, . . . , p are spectators in the map π above, we can reinterpret π as a map BlpF2 → F2.

The pullbacks of E and F are still given by (A.18) (with i still running from 1 to 4).

We now consider an exceptional curve with class C = aH + bF −
∑p

i=1miXi. We

reorder the points being blown up if necessary so that the mi are in nondecreasing order.

We assume that C 0= F −Xi for any i. Since C · (F −Xi) ≥ 0, it follows that a ≥ mi for

each i. Let C ′ = π∗(C). We now find the class of C ′ by computing

C ′ · E = C · π∗(E) = b, C ′ · F = C · π∗(F ) = 3a+ b−
4∑

i=1

mi, (A.19)

and

C ′ ·Xj = C · Yj = 2a+ b−
4∑

i=1, i '=j

mi (j ≤ 4), C ′ ·Xj = mj (j > 4). (A.20)

It follows that

C ′ =

(
3a+ b−

4∑

i=1

mi

)
H2 + bF2 −

4∑

j=1



2a+ b−
4∑

i=1, i '=j

mi



Xj −
p∑

j=5

mjXj . (A.21)

We now claim that 3a+ b−
∑4

i=1mi > a. This will complete the proof of infinitely many

exceptional curves. Starting with one of the allowed exceptional curves from (A.11), we

repeatedly apply π and get a sequence of curves whose coefficient of H2 increases without

bound.

The proof of the claim is simple. Since C is exceptional we have the C ·K = −1, or

4a+ 2b−
p∑

i=1

mi = 1. (A.22)

Since 4 ≤ p/2 and the mi are nondecreasing, (A.22) implies that

2a+ b−
4∑

i=1

mi > 0. (A.23)

Adding a to both sides of (A.23) gives the claimed result.
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For the case of general n, we blow up Fn at n + 2 points and blow down the n + 2

exceptional curves Yj = H −
∑n+2

i=1,i '=j Xj . By an argument analogous to the case n = 2

above, we identify this blowdown map with a map π : Bln+2Fn → Fn. In place of (A.18)

we have in this situation

π∗(E) = E, π∗(F2) = H + F −
n+2∑

i=1

Xi, π∗(Xi) = H −
n+2∑

j=1, j '=i

Xj . (A.24)

As in the case n = 2, we consider an exceptional curve with class C = aH + bF −∑p
i=1miXi. We reorder the points being blown up if necessary so that the mi are in

nondecreasing order. We assume that C 0= F −Xi for any i and conclude that a ≥ mi for

each i as before. Let C ′ = π∗(C). We compute

C ′ · E = C · π∗(E) = b, C ′ · F = C · π∗(F ) = (n+ 1) a+ b−
n+2∑

i=1

mi, (A.25)

and

C ′ ·Xj = C · Yj = na+ b−
n+2∑

i=1, i '=j

mi (j ≤ n+ 2), C ′ ·Xj = mj (j > n+ 2). (A.26)

It follows that

C ′ =

(
(n+ 1) a+ b−

n+2∑

i=1

mi

)
H + bF −

n+2∑

j=1



na+ b−
n+2∑

i=1, i '=j

mi



Xj −
p∑

j=n+3

mjXj .

(A.27)

We only have to show that (n + 1)a + b −
∑n+2

i=1 mi > a, or na + b −
∑n+2

i=1 mi > 0. We

divide into the cases of even and odd p. Since the even case is easier, we content ourselves

with the odd case and write p = 2k + 1.

Since C is exceptional we have the C ·K = −1, or

(n+ 2) a+ 2b−
p∑

i=1

mi = 1, (A.28)

which implies
(
n+ 2

2

)
a+ b−

k∑

i=1

mi −
mk+1

2
> 0, (A.29)

which further implies, since a ≥ mk+1

(
n+ 3

2

)
a+ b−

k+1∑

i=1

mi > 0. (A.30)

We have to replace
∑k+1

i=1 mi in (A.30) with
∑n+2

i=1 mi in verifying the claim, so we

compensate and maintain positivity by adding ((n + 2) − (k + 1))a in (A.30). We only
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have to observe that the resulting coefficient of a is at most n. The difference between this

coefficient and n is

n−
((

n+ 3

2

)
+ (n+ 2)− (k + 1)

)
= k + 1−

(
n+ 7

2

)
(A.31)

which is nonnegative since p ≥ n+ 6.

However, we are trying to do too much here and can relax the result to p = n + 5 if

n ≥ 4, by starting with an exceptional curve whose class has b = 0. For example, we can

consider the curve H −
∑n+5

i=5 Xi.

Now (A.28) simplifies to

(n+ 2) a−
n+5∑

i=1

mi = 1 (A.32)

and we have to show

(n+ 1) a−
n+2∑

i=1

mi > a, (A.33)

or equivalently

na−
n+2∑

i=1

mi > 0. (A.34)

Since the mi are arranged in nondecreasing order, (A.34) follows from (A.32) by comparing

the coefficients of a and the number of mi terms in these two formulas after noting that

n/(n + 2) ≥ (n + 2)/(n + 5) for n ≥ 4. This shows that the number of blowups with

finite Mori cone is given by pmax = 7, 8 (for n = 2, 3 by the p ≥ n + 6 bound) and

pmax = 8, 9, 10, . . . for n = 4, 5, 6, . . . by the p ≥ n+ 5 bound we established).

A.2.2 Weyl groups

In this section, we suggest a more conceptual way to show that there are infinitely many

Mori cone generators for BlpFn and large p while leaving details for future work. We exhibit

a natural action of a group surjecting onto the Weyl group of an infinte Kac-Moody Lie

algebra on H2(BlpFn) for p ≥ n + 2. See [38] for background and the notation we will

follow about Kac-Moody algebras.

To begin with, a permutation of the p blowup points induces a corresponding action

on H2(BlpFn), giving an action of the symmetric group Sp on H2(BlpFn). The symmetric

group is a reflection group, generated by transpositions. The induced map on H2(BlpFn)

associated with the transposition (i, i+1) is identified with the reflection in the hyperplane

orthogonal to ρi = Xi−Xi+1 for i = 1, . . . , p−1. We note that ρ2i = −2 and ρi·K = 0. These

reflections and the symmetric group that they generate preserve the Mori cone generators.

As usual, by a reflection in a curve class ρ with ρ2 = −2 we mean the automorphism of

H2(BlpFn) given by

C 7→ C + (C · ρ) ρ. (A.35)

A simple calculation shows that (A.24) can be identified with the reflection in ρp =

H −
∑n+2

i=1 Xi. We also have ρ2p = −2 and ρp ·K = 0.
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Consider the p× p matrix A with

Aij = −ρi · ρj , (A.36)

where in (A.36) the product on the right-hand side is just the intersection product in

H2(BlpFn). Since A is symmetric with diagonal entries equal to 2 and nonpositive off-

diagonal entries, it follows immediately that A is a generalized Cartan matrix.

Now let gA be the Kac-Moody algebra associated with A. We proceed to identify

{ρ1, . . . , ρp} with a set of roots in the associated root system.

Recall the definition of a realization of a generalized Cartan matrix from [38].

Definition. A realization of an n× n generalized Cartan matrix A is a triple (h,Π,Π∗),

where h is a complex vector space, Π = {α1, . . . ,αn} ⊂ h∗, and π∨ = {α∨
1 , . . . ,α

∨
n} ⊂ h such

that Π and Π∨ are each linearly independent sets, 〈α∨
i ,αj〉 = Aij , and dim h = 2n−rank(A).

Returning to our situation where A is given by (A.36), we see that rank(A) ≥ p − 1

since A contains the nonsingular Cartan matrix of Ap−1 as a submatrix. So rank(A) is

either p− 1 or p.

If rankA = p, then dim h = p and we take h = span(ρ1, . . . , ρp) ⊂ H2(BlpFn). If

rankA = p − 1, then dim h = p + 1 and we take h = K⊥ ⊂ H2(BlpFn). In either case, we

identify h∗ with h via the negative of the intersection pairing. With these identifications,

we let αi = α∨
i = ρi for i = 1, . . . , p to obtain a realization of A.

The Weyl group WA of gA is the subgroup of Aut(h∗) generated by the reflections in

the roots, and is infinite if rank(A) = p− 1. Consider the subgroup G ⊂ Aut(H2(BlpFn))

generated by the reflections. We have a surjection G → WA obtained by restriction to

h∗, so G is also infinite if rank(A) = p − 1. We expect that the action of G on the Mori

cone generators is effective, which would prove that there are infinitely many Mori cone

generators in this case.

We next show that the finiteness of WA perfectly matches the finiteness of the Mori

cone generators as described in section A.2.1. Consider the Dynkin diagram encoding the

Cartan matrix A.

If p = n+ 2, we have an An+1 ×A1 Dynkin diagram with a finite Weyl group.

If p = n+ 3, we have an An+3 Dynkin diagram with a finite Weyl group.

If p ≥ n+ 4, the (n+ 2)nd vertex corresponding to ρn+2 = Xn+2 −Xn+3 is trivalent,

being connected to the vertices corresponding to ρn+1, ρn+3, and ρp. If p = n+4, we have

an Dn+4 Dynkin diagram with a finite Weyl group.

If p = n + 5, we have E6, E7, E8 for n = 1, 2, 3 respectively, with a finite Weyl group.

If n ≥ 4, the Weyl group is infinite.

If p > n+ 5, the Weyl group is infinite.

These results are in perfect agreement with the results of section A.2.1, including the

observation that the pattern for pmax is not followed for n ≤ 3.
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As an example, consider Bl9F4. In this case

A =





2 −1 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0

0 0 0 −1 2 −1 0 0 0

0 0 0 0 −1 2 −1 0 −1

0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 −1 2 0

0 0 0 0 0 −1 0 0 2





(A.37)

This A is singular, so gA and G are infinite. In fact, (A.37) is precisely the Cartan matrix

of affine E8 after reversing the order of the roots, so gA is just affine E8.

More generally, we list the Dynkin diagrams corresponding to p = pmax + 1. For

convenience, we adopt the notation Tp,q,r from the study of triangle singularities. The

corresponding Dynkin diagram has one trivalent vertex and three legs, with the lengths of

the respectively legs (including the trivalent vertex in each case) are p, q, r. For example,

with this notation Dn = T2,2,n−2, E6 = T2,3,3, E7 = T2,3,4, and E8 = T2,3,5.

For n = 2, pmax + 1 = 8, and we get T2,4,4, which is affine E7.

For n = 3, pmax +1 = 9, and we get T2,4,5. This has an infinite Weyl group, but is not

the affine Weyl group of any classical group.

For n = 4, pmax + 1 = 9, and we get T2,3,6, which is affine E8 as we have explained

above.

For n > 4, pmax +1 = n+5, and we get T2,3,n+2. This has an infinite Weyl group, but

is not the affine Weyl group of any classical group.

A.2.3 Fiber classes

For the purpose of identifying gauge theory descriptions of shrinkable 3-folds, one also

needs to know the fiber classes corresponding to W-bosons in the 5d spectrum. A fiber

class f ⊂ BlpFn is a rational curve satisfying f2 = 0. When p = 0, as described above,

there is only a single fiber class, namely f = F ⊂ Fn. However, when p > 0, additional

fiber classes may appear.

We denote fiber classes by f = dH + sF −
∑p

i=1 aiXi (where F 2 = 0, H2 = n, and Xi

are exceptional curves) which we abbreviate as (d, s; a1, . . . , ap). Using numerical checks,

we believe the full set of fiber classes f ⊂ BlpFn with 2 ≤ n ≤ 7 and p ≤ pmax, organized
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according to the number f · E = s, are as follows:

BlpF2 :






(1, 0; 12) , (2, 0; 2, 14) , (3, 0; 24, 12) ,
(3, 0; 3, 2, 15) , (4, 0; 32, 23, 12) , (5, 0; 35, 2, 1) ,
(5, 0; 4, 32, 24) , (6, 0; 42, 34, 2) , (7, 0; 45, 32)

F , (1, 1; 14) , (2, 1; 22, 14) , (3, 1; 26) ,
(3, 1; 3, 23, 13) , (4, 1; 33, 23, 1) , (4, 1; 4, 26) ,
(5, 1; 4, 34, 22) , (6, 1; 43, 34) , (7, 1; 47)

(1, 2; 16) , (2, 2; 23, 14) , (3, 2; 3, 25, 1) ,
(4, 2; 34, 23) , (5, 2; 4, 36)






(A.38)

BlpF3 :






(1, 0; 13) , (2, 0; 22, 14) , (3, 0; 3, 24, 12) , (3, 0; 32, 2, 15) ,
(4, 0; 34, 23) , (4, 0; 35, 13) , (4, 0; 4, 32, 23, 12) ,
(5, 0; 43, 32, 22, 1) , (5, 0; 5, 35, 2, 1) , (5, 0; 5, 4, 32, 24) ,
(6, 0; 5, 44, 32, 1) , (6, 0; 52, 42, 32, 22) , (6, 0; 6, 42, 34, 2) ,
(7, 0; 55, 32, 2) , (7, 0; 6, 52, 43, 3, 2) , (7, 0; 6, 53, 34) ,
(7, 0; 62, 43, 33) , (7, 0; 7, 45, 32) , (8, 0; 62, 54, 4, 2) ,
(8, 0; 63, 52, 4, 32) , (8, 0; 7, 55, 32) , (8, 0; 7, 6, 52, 43, 3) ,
(9, 0; 7, 64, 5, 4, 3) , (9, 0; 72, 6, 54, 3) , (9, 0; 72, 62, 5, 43) ,
(9, 0; 8, 62, 53, 42) , (10, 0; 73, 64, 3) , (10, 0; 74, 62, 42) ,
(10, 0; 8, 72, 62, 52, 4) , (10, 0; 82, 62, 54) , (10, 0; 9, 64, 53) ,
(11, 0; 82, 73, 62, 4) , (11, 0; 83, 7, 62, 52) , (11, 0; 9, 74, 6, 52) ,
(11, 0; 9, 8, 7, 64, 5) , (12, 0; 9, 83, 72, 6, 5) ,
(12, 0; 92, 75, 5) , (12, 0; 92, 8, 72, 63) , (13, 0; 92, 85, 5) ,
(13, 0; 93, 83, 62) , (13, 0; 94, 73, 6) , (18, 0; 122, 114, 102) ,
(19, 0; 125, 113)

F , (1, 1; 15) , (2, 1; 23, 14) , (3, 1; 3, 26) , (4, 1; 42, 26) ,
(3, 1; 32, 23, 13) , (4, 1; 4, 33, 23, 1) , (5, 1; 43, 34, 1) ,
(5, 1; 44, 3, 23) , (5, 1; 5, 4, 34, 22) , (6, 1; 52, 43, 32, 2) ,
(6, 1; 6, 43, 34) , (7, 1; 55, 42, 2) , (7, 1; 6, 53, 42, 32) ,
(7, 1; 62, 45, 3) , (7, 1; 7, 47) , (8, 1; 63, 53, 4, 3) ,
(8, 1; 64, 44) , (8, 1; 7, 6, 53, 43) , (9, 1; 67, 3) ,
(9, 1; 7, 65, 42) , (9, 1; 72, 62, 53, 4) , (9, 1; 8, 62, 55) ,
(10, 1; 74, 63, 4) , (10, 1; 8, 72, 63, 52) , (11, 1; 82, 74, 6, 5) ,
(11, 1; 83, 7, 64) , (11, 1; 9, 74, 63) , (12, 1; 86, 62) ,
(12, 1; 9, 83, 73, 6) , (13, 1; 93, 83, 72) , (16, 1; 108)

(1, 2; 17) , (2, 2; 24, 14) , (3, 2; 32, 25, 1) ,
(4, 2; 37, 1) , (4, 2; 4, 34, 23) , (5, 2; 44, 33, 2) ,
(5, 2; 5, 4, 36) , (6, 2; 52, 44, 32) , (7, 2; 56, 4, 3) ,
(7, 2; 6, 53, 44) , (8, 2; 63, 54, 4) , (8, 2; 7, 57) ,
(9, 2; 7, 65, 52) , (10, 2; 74, 64) , (11, 2; 8, 77)






(A.39)
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BlpF4 :






(1, 0; 14) , (2, 0; 23, 14) , (3, 0; 32, 24, 12) , (4, 0; 4, 34, 23) ,
(5, 0; 44, 34)

F , (1, 1; 16) , (2, 1; 24, 14) , (3, 1; 32, 26) , (4, 1; 38)

(1, 2; 18)






(A.40)

BlpF5 :






(1, 0; 15) , (2, 0; 24, 14) , (3, 0; 33, 24, 12) ,
(4, 0; 42, 34, 23) , (5, 0; 5, 44, 34) , (6, 0; 54, 45)

F , (1, 1; 17) , (2, 1; 25, 14) , (3, 1; 33, 26) ,
(4, 1; 4, 38)

(1, 2; 19)






(A.41)

BlpF6 :






(1, 0; 16) , (2, 0; 25, 14) , (3, 0; 34, 24, 12) ,
(4, 0; 43, 34, 23) , (5, 0; 52, 44, 34) , (6, 0; 6, 54, 45) ,
(7, 0; 64, 56)

F , (1, 1; 18) , (2, 1; 26, 14) , (3, 1; 34, 26) ,
(4, 1; 42, 38) , (5, 1; 410)

(1, 2; 110)






(A.42)

BlpF7 :






(1, 0; 17) , (2, 0; 26, 14) , (3, 0; 35, 24, 12) ,
(4, 0; 44, 34, 23) , (5, 0; 53, 44, 34) , (6, 0; 62, 54, 45)

F , (1, 1; 19) , (2, 1; 27, 14) , (3, 1; 35, 26) ,
(4, 1; 43, 38) , (5, 1; 5, 410)

(1, 2; 111)






. (A.43)

B Numerical bounds

B.1 Bound on n for Blp1Fn≥2 ∪ dPp2

It is possible to place a crude upper bound on n for the Hirzebruch surfaces Fn that can

appear as irreducible components in the rank 2 surfaces S = S1 ∪ S2:

n ≤ 8. (B.1)

This upper bound can be established by exploiting the Calabi-Yau condition on C = S1∩S2,

which requires

C2
S2

= n− 2, (B.2)

where we take C = d& −
∑

miXi ∈ dPp2 . For the sake of argument, we find it useful to

work in terms of the ratio z ≡ φ2/φ1. The positivity condition imposed on the volume
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of the curve F ∈ F implies z ≤ 2. Moreover, the positivity condition on the volumes of

exceptional divisors Xi ∈ dPp2 implies z ≥ mi for all i, and hence we have the condition

mi ≤ z ≤ 2 =⇒ mi ≤ 2. (B.3)

One can “prove” the bound (B.1) by using a computing tool to attempt to solve the Dio-

phantine equation (B.2) subject to the condition (B.3) assuming n ≥ 8, and demonstrating

that there are no solutions.

Another strategy is to define vectors *m = (m1, . . . ,mp2),*1 = (1, . . . , 1) so that

n = −K · C = 3d−*1 · *m = d2 − |*m|2 + 2, (B.4)

where we take
*1 · *m =

√
p2m cos θ,

√
p2 =

√
|*1|2, m ≡

√
|*m|2. (B.5)

Solving this system for n, one can attempt to find values of the parameters (θ,m) for all

values of p2 ≤ 8 satisfying

n =
1

2

(
3
√
4m2 − 4m

√
p2 cos θ + 1− 2m

√
p2 cos θ + 9

)
≥ 8, (B.6)

for which there are no solutions.

B.2 Bound on n for Blp1Fn ∪ F0

Proposition. Let S = Blp1Fn ∪ F0, J = φ1[Blp1Fn] + φ2[F0], and let the gluing curve

CF0 = aF + bE.

1. If p1 = 0, then S is not shrinkable for n > 10.

2. If p1 > 0, then S is not shrinkable for n > 6.

Proof. For the case p1 = 0, requiring that the Mori generators have non-negative volumes

straightforwardly leads to the conditions

ab+ 1 = a+ b, 2ab = n− 2, max

{
a

2
,
b

2
,
n− 2

n

}
≤ 2. (B.7)

The first two conditions above have solution

a = 1 or b = 1. (B.8)

Since F and E may be interchanged freely in F0, with no less of generality we set a = 1.

Simplifying the above constraints, we find 2b = n− 2, which implies

n ≤ 10. (B.9)

When p1 > 0, one can show (cf. appendix A.2) that the Mori cone of Blp1Fn contains as a

generator a rational curve of self intersection −1 meeting the gluing curve CBlp1Fn = E at a

single point, and hence the third condition in (B.7) must be adjusted to max{a/2, b/2, (n−
2)/n} ≤ 1. Again setting a = 1, one finds

n ≤ 6. (B.10)
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B.3 Bound on p1, p2 for dPp1 ∪ dPp2

Proposition. Let S = dPp1 ∪ dPp2 , and let J = φ1[dPp1 ] + φ2[dPp2 ].

1. If p1, p2 ≥ 2, then S is not shrinkable for p1 > 6 or p2 > 6.

2. If p1 = 1, then S is not shrinkable for p2 > 7.

Proof. For the first case, assume let C1 ∈ dPp1≥2, C2 ∈ dPp2≥2 be Mori generators,

and let D = dPp1 ∩ dPp2 . Then, setting φ1 = 1,φ2 = z, we have the following positivity

conditions:

vol(C1) = 1− C1 ·Dz ≥ 0, vol(C2) = z − C2 ·D ≥ 0. (B.11)

Combining the above conditions, one finds

(C2 ·D)(C1 ·D) ≤ 1, ∀C1 ∈ dPp1 , C2 ∈ dPp2 . (B.12)

By explicit computation, one can show that the above condition cannot be satisfied for

either p1 > 6 or p2 > 6.

For the second case, let p1 = 1. The Mori generators of dP1 are X1, & −X1 and have

respective volumes vol(X1) = 1, vol(&−X1) = z−2, so the condition (B.12) gets modified to

C2 ·D ≤ 2, ∀C2 ∈ dPp2 , (B.13)

which cannot be satisfied for p2 = 8.

C Smoothness of building blocks

In this appendix, we provide some justification for our conjecture that the Si can be taken to

be smooth. If one of the components Si is singular, the basic idea is that we should be able

to find a complex structure deformation which smooths the singularity while preserving

the Calabi-Yau embedding. In section 3.4 we gave another conjecture which makes the

condition of a Calabi-Yau embedding quite manageable.

This conjecture is natural from the perspective of web diagrams or toric geometry.

Consider for example the case of S = P(1, 1, 2). This singular geometry is physically

equivalent to F2 in the zero mass limit. Figure 28 depicts how the section E in F2 changes

to the singular point in P(1, 1, 2) in this limit. Physically, when two parallel external

5-branes coincide, there are extra free massless states charged under the enhanced global

symmetry associated to this brane configuration.22 The full transition is achieved by giving

a vev to these free states. Switching on a vev for these states prevents one from turning on

a mass parameter (proportional to the distance between the external 5-branes) and thus

leads to a singular configuration P(1, 1, 2) that cannot be resolved.

We can extrapolate from this example to a more general geometric setting. Suppose

that S has an A1 singularity. It is well known in that this singularity is smoothable, either

by writing the local equation x2 + y2 + z2 = t with t a deformation parameter, or by

22Moreover, because the parallel 5-branes are external, these free states can be excited infinitely far away

from the 5d SCFT. However, this does not present a problem as first discussed in [9] because the states are

decoupled from the 5d sector; see [39].
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(0, 1) (0, 1) (0, 2)

Figure 28. The red line is the curve of self-intersection −2. After the transition X → X ′, we
see that two vertical external 5-branes are coincident — this configuration describes an isolated
singularity in the corresponding 3-fold X ′.

first resolving the singularity by a P1 with self-intersection −2 and then deforming the

complex structure so that the −2 curve is no longer holomorphic. It is easy to see that this

deformation can take place within a family of Calabi-Yau threefolds. A similar deformation

can be provided for any ADE singularity. We treat an ADE singularity when all related

masses are turned off and the singularity by associated complex structure deformation in

the equal footing.

We can have many more kinds of singularities on surfaces contained in a smooth Calabi-

Yau threefold. We content ourselves with providing one example and explaining how the

singularity can be avoided up to physical equivalence.

A simple example of a singular rank 1 shrinkable surface S is constructed by letting

Y be the singular hypersurface defined by the equation x3 + y3 + z3 = 0 in C4. We can

blow up the origin to obtain a Calabi-Yau resolution f : X → Y , and the exceptional

divisor is the hypersurface S ⊂ P3 defined by x31 + x32 + x33 = 0, which is singular at

(x0, x1, x2, x3) = (1, 0, 0, 0). The fact that X is Calabi-Yau is computed by a standard

algebro-geometric computation explained for example in [28]. Letting W be the blowup

of C4 at the origin with E / P3 the exceptional divisor, we have KW = 3E. Since Y is

a hypersurface in C4 with a triple point23 at the origin, its proper transform X has class

X = −3E in W . Then by adjunction KX = (KW + [X])|X = (3E − 3E)|X = 0. This is

just a cone in P3 over a plane curve which is singular at its vertex (1, 0, 0, 0). This singular

surface can be checked to be shrinkable.

The notion of physical equivalence allows us to bypass this difficulty. We can identify Y

above with Y0 in the one-parameter family of hypersurfaces Yt defined by tw3+x3+y3+z3 =

0. Blowing up the origin gives a family ft : Xt → Yt of Calabi-Yau resolutions, with

exceptional divisor St = f−1
t (0) defined by tx30 + x31 + x32 + x33 = 0. However, for t 0= 0,

St is a smooth cubic surface, isomorphic to dP6 in fact. So the 5d SCFT associated with

the singular shrinkable surface S is physically equivalent to the well-known E6 theory [6].

In other words, we can safely ignore S in our classification. But the only smooth rational

or ruled surfaces are P2 or BlpP(E)g (see appendix A). Assuming the above conjecture is

true, it is therefore possible to assemble a shrinkable surface S from a concise collection

of known “building blocks”, whose smooth components Si are rational or ruled surfaces or

their blowups.

23The notion of a triple point of hypersurface should not be confused with the notion of the intersection

of three surfaces at a triple point which was discussed in section 3.3.
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1 Introduction

Recently, there has been a resurgence of interest in the problem of classifying 5d super-
conformal field theories (SCFTs), with a particular emphasis on exploring the relationship
between 5d UV fixed points and 6d UV fixed points [1–11]. The motivation for studying
this relationship is the observation that all known 5d SCFTs can be organized into families
of theories (connected to one another by RG flows) whose “progenitors” are 6d SCFTs
compactified on a circle [1, 2], and hence every 6d SCFT compactified on a circle provides
a natural starting point for the systematic identification of a large family of 5d SCFTs.

While it has been appreciated in the literature for some time that circle compactifica-
tions of 6d SCFTs can flow to 5d SCFTs, only recently has the existence of a 6d UV fixed
point been understood in an intrinsically 5d setting. To understand this point, let us recall
that the most widely used method for identifying 5d SCFTs is to construct a candidate
effective field theory assumed to be a relevant deformation of a 5d UV fixed point, and to
verify the effective theory passes a number of consistency checks which are believed to be
sufficient to guarantee the existence of a such a non-trivial UV fixed point. This method,
which has been used to construct numerous examples of UV complete minimally supersym-
metric 5d QFTs — both by means of standard gauge theoretic methods [1, 12, 13], as well
as string theory constructions such as (p, q) 5-brane configurations in type IIB string the-
ory [14–20] and M-theory compactifications on local Calabi-Yau threefolds [2, 21–23]—has
also led to the identification of numerous examples of theories that despite not satisfying
the criteria necessary for the existence of a non-trivial 5d UV completion, nonetheless ex-
hibit certain features that suggest they can be UV completed in 6d. All known examples
of such theories are characterized by the emergence of an intrinsic length scale that is
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interpreted as the size of a compactification circle, and it has been argued that each of
these theories is a circle compactification of a 6d SCFT possibly twisted by the action of a
discrete global symmetry;1 see for example [2–4, 18, 24–28]. These observations have led
to the identification of a set of criteria believed sufficient to imply the existence of a 6d UV
completion for certain 5d theories, and this introduces the possibility of also classifying
circle compactifications of 6d SCFTs using 5d physics.

It was recently conjectured [2] that all 5d SCFTs can be obtained via RG flows starting
from 5d Kaluza-Klein (KK) theories. The latter are defined as 6d SCFTs compactified on
a circle (of finite radius) possibly with discrete twists around the circle. Given a 5d KK
theory, the RG flows of interest correspond to integrating out BPS particles from the 5d
KK theory — thus, if the full BPS spectrum is known then according to the conjecture
of [2] it is possible to classify all 5d SCFTs by systematically studying all possible RG flows
from the 5d KK theory.

In this paper, we focus on the geometric approach in which one realizes a 5d KK theory
via a compactification of M-theory on a genus one fibered Calabi-Yau threefold. The set of
holomorphic curves in the threefold completely encode the information about the spectrum
of BPS particles required to track all RG flows down to 5d SCFTs. Therefore, a precursor
to classifying RG flows from 5d KK theories to 5d SCFTs is to geometrically classify all 5d
KK theories themselves in terms of Calabi-Yau threefolds. See [10] (also [2]) for explicit
application of this geometric procedure to the classification of 5d SCFTs up to rank three.

It is believed that all 6d SCFTs can be constructed by compactifying F-theory on
singular elliptically fibered Calabi-Yau threefolds admitting certain singular limits char-
acterized by the contraction of holomorphic curves in the base of the fibration. Here we
should distinguish between two different kinds of compactifications of F-theory depending
on whether or not they contain O7+ plane from the point of view of type IIB string theory.
If there is no O7+, then the compactification is said to lie in the unfrozen phase of F-theory;
otherwise it is said to lie in the frozen phase [29–31] of F-theory. These two phases are
qualitatively different in the following sense: the rules for converting geometry in the un-
frozen phase to the corresponding 6d physics are far more straightforward than the rules for
converting geometry in the frozen phase to the corresponding 6d physics [32]. See [33, 34]
(see also [35]) for the classification of 6d SCFTs arising from the unfrozen phase of F-theory,
and [36] for the classification of 6d SCFTs arising from the frozen phase of F-theory.

A 5d KK theory corresponding to the untwisted compactification of a 6d SCFT aris-
ing in the unfrozen phase can be constructed by compactifying M-theory on a Calabi-Yau
threefold which is a resolution of the Calabi-Yau threefold arising in the F-theory construc-
tion. This fact is a special case of the duality between M-theory and (unfrozen phase of)
F-theory compactified on a circle (without any twist). Explicit resolution of all Calabi-
Yau threefolds associated to 6d SCFTs was performed by [3, 4], and hence the Calabi-Yau
threefolds associated to corresponding 5d KK theories was determined. These threefolds
are elliptically fibered since the threefolds associated to 6d SCFTs are elliptically fibered
to begin with.

1Twisting the theory around the circle means that we introduce a holonomy for the background gauge
fields associated to discrete global symmetries of the theory.
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In this paper, we extend the work of [3, 4] and determine a resolved local Calabi-Yau
threefold describing every 5d KK theory, with the exception of certain examples which do
not appear to admit a conventional geometric description.2 Not only do we include twisted
compactifications of 6d SCFTs arising in the unfrozen phase, but also the untwisted and
twisted compactifications of 6d SCFTs arising in the frozen phase. We find that these
Calabi-Yau threefolds are in general only genus one fibered and may not be elliptically
fibered, which means that the fibration may not admit a zero section.

Our analysis can be divided into two parts. In the first part of the analysis, which
is purely field theoretic, we determine the prepotential for each 5d KK theory by using
the following observations: each 6d SCFT admits a 6d gauge theory description which can
be reduced on a circle with an appropriate twist to obtain a canonical 5d gauge theory
description of the associated 5d KK theory. The Green-Schwarz term in 6d reduces to a
Chern-Simons term in the 5d gauge theory, which induces a tree-level contribution to the
prepotential. Combining this contribution with the one-loop contribution coming from the
5d gauge theory produces the full prepotential for the 5d KK theory. In the second part
of the analysis, we interpret the prepotential as describing the triple intersection numbers
of 4-cycles inside a yet to be determined Calabi-Yau threefold. Using the data of these
triple intersection numbers, along with some other consistency conditions, we are able
to determine a description of the Calabi-Yau threefold as a neighborhood of intersecting
Kähler surfaces along the lines of the discussion in [2–4], and we verify that each threefold
admits the structure of genus one fibration.3 By construction, compactifying M-theory on
this Calabi-Yau threefold leads to the 5d KK theory whose prepotential we computed in
the first part of the analysis.

One can view these Calabi-Yau threefolds as providing hitherto unknown M-theory
duals of general unfrozen and frozen F-theory configurations compactified on a circle possi-
bly with a discrete twist. Even though we have provided explicit results only for F-theory
configurations realizing 6d SCFTs, our methods should in principle apply to any general
F-theory configuration.

Notice that at no step in our analysis do we distinguish between 6d SCFTs arising
from the unfrozen phase and 6d SCFTs arising from the frozen phase. Thus, according
to our analysis, the rules for converting geometry into the corresponding 5d physics are
uniform irrespective of whether the 5d KK theory arises from the compactification of a 6d
SCFT lying in the frozen or the unfrozen phase. In other words, the frozen and unfrozen
six-dimensional compactifications of F-theory are given a unified geometric description4 in
M-theory.

2For these examples, we propose an algebraic description which mimics certain properties of the Calabi-
Yau threefolds associated to other KK theories. This algebraic description can be used to compute RG
flows starting from these KK theories to 5d SCFTs. In the paper we sometimes abuse terminology and use
the word ‘geometry’ to refer to both theories that admit a conventional geometric description along with
those (i.e. “non-geometric” theories) for which only an algebraic description is available.

3See for example [37] for a discussion of F-theory compactifications on genus one fibered, in contrast to
elliptically fibered, Calabi-Yau varieties.

4Some of the frozen theories belong to the class of exceptional KK theories which do not admit a
conventional geometric description, and thus to which we only associate an algebraic description.
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We close the introduction with a brief overview of the structure of Calabi-Yau threefolds
that we associate to 5d KK theories. By construction, the structure of these threefolds
descends from the structure of 6d SCFTs. Recall that an important object characterizing
a 6d SCFT is the matrix of Dirac pairings of “fundamental” BPS strings visible on the
tensor branch of the 6d SCFT. The matrix of Dirac pairings is a symmetric, positive
definite, integer matrix with positive entries on the diagonal and non-positive off-diagonal
entries. Thus, the Dirac pairing matrix is analogous to the Cartan matrix of a simply laced
Lie algebra, and we can associate to this matrix a graph analogous to a Dynkin graph for
a simply laced Lie algebra.

As discussed in more detail later in the paper, the matrix of Dirac pairings descends
to a matrix of Chern-Simons terms in the canonical gauge theory associated to the 5d KK
theory, where the precise map between the two matrices depends on the choice of twist. We
find that 5d KK theories end up organizing themselves according to this matrix of Chern-
Simons terms. Like the matrix of Dirac pairings, the matrix of Chern-Simons terms is in
general a positive definite, integer matrix with positive entries on the diagonal and non-
positive off-diagonal entries, where off-diagonal entries can only be zero if their transposes
are also zero. But, unlike the matrix of Dirac pairings, the matrix of Chern-Simons terms
is not necessarily a symmetric matrix. Thus, the matrix of Chern-Simons couplings is
analogous to the Cartan matrix of a general (simply or non-simply laced) Lie algebra, and
we associate to it a graph analogous to a Dynkin graph for a general Lie algebra.

In this way, 5d KK theories are characterized by graphs that generalize Dynkin graphs.
The associated Calabi-Yau geometry is assembled according to the structure of this graph:

• To each node in the graph, we associate a collection of Hirzebruch surfaces intersecting
with each other. In fact, we associate a family of such collections parametrized by
an integer ν, where the collections labeled by different values of ν are related to one
another by flop transitions. A key point is that a certain linear combination of the P1

fibers of these Hirzebruch surfaces has genus one, and an appropriate multiple of the
genus one fiber is identified physically with the KK mode of momentum one around
the circle.

• To a pair of nodes connected to each other by some edges, we associate certain gluing5
rules. These gluing rules describe how to glue the collection of surfaces associated to
a node to the collection of surfaces associated to another node. These gluing rules
capture the data of intersections between the two collections of surfaces. In general,
the gluing rules provided in this paper work only for a subset of the values of ν

parametrizing the two collections of surfaces being glued together. Our claim is that
given a 5d KK theory, we can always find at least one value of ν for each node in the
associated graph such that the gluing rules for each edge work.

5When two Kähler surfaces intersect transversely along a common holomorphic curve inside of a Calabi-
Yau threefold, the intersection implies that a holomorphic curve inside one of the two surfaces is identified
with a holomorphic curve inside of the other surface. We refer to this identification as a gluing together of
the two surfaces.
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By applying these gluing rules, it can be checked that a multiple of the genus one
fiber in one collection of surfaces is glued to a multiple of the genus fiber in the
other collection of surfaces. These multiples are such that the KK mode associated
to one collection is identified with the KK mode associated to the other collection.
This must be so since there is only a single KK mode associated to the full KK
theory and the genus one fibers inside each collection are merely different geometric
manifestations of the same mode.

• Once we are done gluing all the collections of surfaces according to the gluing rules
associated to each edge, we obtain a larger collection of surfaces intersecting with
each other. The Calabi-Yau threefold associated to the KK theory is by definition a
local neighborhood of this larger collection of surfaces. As we have described above,
this Calabi-Yau threefold is canonically genus one fibered.

The rest of the paper is organized as follows. In section 2, we review how all 6d SCFTs
can be neatly encapsulated in terms of graphs that capture the data of the tensor branch
of the corresponding 6d SCFTs. We list all the possible vertices and edges appearing
in such graphs. Our presentation treats unfrozen and frozen cases on an equal footing.
Another distinguishing feature of our presentation is that we carefully distinguish different
theories having the same gauge algebra content and same Dirac pairing. This includes the
theta angle for sp(n), different distributions of hypers between the spinor and cospinor
representations of so(12), as well as some frozen cases.

In section 3, we study all the possible twists of 6d SCFTs once they are compactified on
a circle. Each twist leads to a different 5d KK theory. The different twists of a 6d SCFT T

are characterized by equivalence classes in the group of discrete global symmetries of T. We
show that these equivalence classes can be described by foldings of the graphs ΣT associated
to T along with choice of an outer automorphism for each gauge algebra appearing in the low
energy theory on the tensor branch of T. Thus, different 5d KK theories are also classified
by graphs that generalize the graphs classifying 6d SCFTs. We provide a list of all the
possible vertices and edges that can appear in the graphs associated to 5d KK theories.

In section 4, we provide a prescription to obtain the prepotential of any 5d KK theory.
This is done by compactifying the low energy gauge theory appearing on the tensor branch
of the corresponding 6d SCFT on a circle with the corresponding twist. This leads to a
5d gauge theory whose prepotential, along with a shift, is identified as the prepotential for
the 5d KK theory.

In section 5, we associate a genus-one fibered Calabi-Yau threefold to each 5d KK
theory, except for a few exceptional cases, for which we provide an algebraic description
mimicking the essential properties of genus one fibered Calabi-Yau threefolds. The chief
ingredient in the determination of the threefold is the prepotential determined in section 4.
The prepotential captures the data of the triple intersection numbers of surfaces inside the
threefold. Once a description of the threefold as a local neighborhood of a collection of
surfaces glued to each other is presented, these triple intersections can be computed in a
multitude of different ways. Demanding all of these different computations to give the same
result leads to strong consistency constraints on such a description and often uniquely fixes
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the description (up to isomorphisms). Other consistency conditions playing a crucial role
are also discussed in section 5.1.

The description of the geometry is provided in two different steps according to the
structure of the graph associated to the 5d KK theory under study. First, a part of
the geometry is assigned to each vertex in the graph according to results presented in
section 5.2. Then, depending on the configuration of edges in the graph, different parts of
the geometry corresponding to different vertices in the graph are glued to each other via
the gluing rules presented in sections 5.3 and 5.4.

In section 6, we present our conclusions. In appendix A, we review some geometric
background relevant for this paper. In appendix B, we address certain exceptional examples
of geometries and gluing rules that do not admit a straightforward analysis following the
main methods described in this paper. In appendix C, we provide a concrete and non-trivial
check of our proposal for computing the prepotential and geometries associated to 5d KK
theories. We demonstrate that a 5d KK theory arising from a non-trivial twist (involving a
permutation of tensor multiplets) of a 6d SCFT has a 5d gauge theory description found in
earlier studies by using brane constructions. In appendix D, we provide some more checks
of our proposal. Finally, in appendix E we provide instructions for using the Mathematica
notebook submitted as supplementary material along with this paper. The Mathematica
notebook allows one to compute the prepotential for 5d KK theories involving one or two
nodes. Combining these results, one can obtain the prepotential for any 5d KK theory. The
notebook also converts the prepotential into triple intersection numbers for the associated
geometry and displays these intersection numbers in a graphical form.

2 Structure of 6d SCFTs

In this section, we review the fact that 6d SCFTs are characterized by graphs that are
analogous to Dynkin graphs associated to simply laced Lie algebras. In the next section,
we will show that 5d KK theories are also characterized by similar graphs that are instead
analogous to Dynkin graphs associated to general (i.e. both simply laced and non-simply
laced) Lie algebras.

The low-energy theory on the tensor branch of a 6d SCFT T can be organized in
terms of tensor multiplets Bi. There is a gauge algebra gi associated to each i where gi
can either be a simple or a trivial algebra. Each tensor multiplet Bi is also associated
to a “fundamental” BPS string excitation Si such that the charge of Si under Bj is the
Kronecker delta δij . The Dirac pairing Ωij between Si and Sj appears in the Green-Schwarz
term in the Lagrangian

ΩijBi ∧ tr(F 2
j ) (2.1)

where Fj is the field strength for gj if gj is simple and Fj = 0 if gj is trivial.
[Ωij ] is a symmetric, positive definite matrix with all of its entries valued in integers.

Thus, it is analogous to the Cartan matrix for a simply laced Lie algebra. The only possible
values for off-diagonal entries are Ωij = 0,−1,−2. We note that Ωij = −2 is only possible
for 6d SCFTs arising from the frozen phase of F-theory [32, 36].
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Ωii
gi Comments Hypermultiplet content

1
sp(n)θ θ = 0,π (2n+ 8)F

1
su(n) n ≥ 3 (n+ 8)F+ Λ2

1
su(n̂) n ≥ 8; frozen; non-geometric (n− 8)F+ S2

1
su(6̃) 15F+ 1

2Λ3

2
su(n) 2nF

3
su(3)

4
so(n) n ≥ 8 (n− 8)F

k
so(8) 1 ≤ k ≤ 3 (4− k)F+ (4− k)S+ (4− k)C

k
so(n) 1 ≤ k ≤ 3; 7 ≤ n ≤ 12, n %= 8 (n− 4− k)F+ 2! 9−n

2 "(4− k)S

k
so(1̂2) k = 1, 2 (8− k)F+ 1

2(3− k)S+ 1
2C

2
so(13) 7F+ 1

2S

k

g2 1 ≤ k ≤ 3 (10− 3k)F

k
f4 1 ≤ k ≤ 5 (5− k)F

k

e6 1 ≤ k ≤ 6 (6− k)F

k

e7 1 ≤ k ≤ 8 1
2(8− k)F

12
e8

Table 1. List of all the possible nodes with non-trivial gi appearing in graphs associated to 6d
SCFTs. A hat or a tilde distinguishes different nodes having same values of Ωii and gi.
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Ωii
gi Comments Flavor symmetry algebra, f

1
sp(0)θ θ = 0,π e8

2
su(1) su(2)

Table 2. List of all the possible nodes with trivial gi that can appear in graphs associated to 6d
SCFTs. If Ωii = 2, we refer to the trivial gauge algebra as su(1) and if Ωii = 1, we refer to the trivial
gauge algebra as sp(0). In the latter case, sometimes a Z2 valued theta angle is physically relevant.
We also list the flavor symmetry algebra f for each case. The sum of gauge algebras neighboring
each such node must be contained inside the corresponding f.

We can thus display the data of a 6d SCFT in terms of an associated graph ΣT that
is constructed as follows:

• Nodes: for each tensor multiplet Bi, we place a node i with value Ωii

gi
. All such

possibilities are listed in table 1 when gi is non-trivial, and in table 2 when gi is trivial.
In the former case, each node contributes hypers charged under a representation Ri

of gi where Ri is shown in table 1. In the latter case, for the node with gi = sp(0),
an important role is played by the adjoint representation of e8, which is formed by
the BPS string excitations associated to this node.

We note that the node 1
su(n̂)

only arises in the frozen phase of F-theory.
In the case of Ωii = 1 and gi = sp(n), there is a possibility of a Z2 valued 6d theta
angle which is physically relevant (in the context of 6d SCFTs) only when the 2n+8
hypers in fundamental are gauged by a neighboring su(2n + 8) gauge algebra. For
gi = sp(0), the theta angle is physically relevant (in the context of 6d SCFTs) only
if there is a neighboring su(8) gauge algebra [38]. This can be understood in terms
of two different embeddings of su(8) into e8 (both having embedding index one), so
that the adjoint of e8 decomposes differently in the two cases, leading to different
spectrum of string excitations.
In the case of Ωii = 1 and gi = su(6), there are two possible choices of matter
content. We distinguish the non-standard choice of matter content by denoting the
corresponding gi as su(6̃).
In the case of gi = so(12), the two spinor representations S and C are not conjugate to
each other but have same contributions to the anomaly polynomial. The total number
of hypers in the two spinor representations is fixed by the value of Ωii. But since
the two spinor representations are not conjugate, the relative distribution of hypers
between the two makes a difference. For Ωii = 1, 2, we can obtain two inequivalent
theories in this way (note that the existence of two inequivalent theories with so(12)
gauge symmetry was pointed out in [11].) The version containing both S and C is
distinguished from the one contataining only S by denoting its gi as so(1̂2).
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Ωii
gi

Ωjj

gj Comments Mixed hyper content

1
sp(ni)

2
su(nj) ni ≤ nj ; nj ≤ 2ni + 7 F⊗ F

1
sp(ni)θ

2
su(nj) nj = 2ni + 8; θ = 0,π F⊗ F

1
sp(ni)

k
so(nj) ni ≤ nj − 4− k; nj ≤ 4ni + 16; 2 ≤ k ≤ 4 1

2(F⊗ F)

1
sp(ni)

2
so(1̂2) ni ≤ 6 1

2(F⊗ F)

1
sp(ni)

k
so(8) ni ≤ 4− k; k ≤ 3 1

2(F⊗ S)

1
sp(ni)

k
so(7) ni ≤ 8− 2k; k = 2, 3 1

2(F⊗ S)

1
sp(ni)

k

g2 ni ≤ 10− 3k; k = 2, 3 1
2(F⊗ F)

1
su(ni)

2
su(nj) ni ≤ 2nj ; nj ≤ ni + 8 F⊗ F

1
su(n̂i)

2
su(nj) ni ≤ 2nj ; nj ≤ ni − 8 F⊗ F

1
su(6̃)

2
su(nj) 3 ≤ nj ≤ 15 F⊗ F

2
su(ni)

2
su(nj) ni ≤ 2nj ; nj ≤ 2ni F⊗ F

2
su(ni)

4
so(nj)

2
ni ≤ nj − 8; nj ≤ 2ni; frozen F⊗ F

2
su(2)

k
so(7) 1 ≤ k ≤ 3 1

2(F⊗ S)

2
su(2)

k

g2 1 ≤ k ≤ 3 1
2(F⊗ F)

Table 3. List of all the possible edges between two gauge-theoretic nodes that can appear in graphs
characterizing 6d SCFTs. An edge with 2 in the middle of it denotes the fact that there are two edges
between the two asocciated nodes. Solid edges denote matter in bifundamental and dashed edges
denote matter in F⊗ S. The theta angle of sp(n) is only displayed when it is physically relevant.

• Edges: consider two nodes i and j whose values are Ωii

gi
and Ωjj

gj

respectively.
We place −Ωij number of edges between i and j. For instance, if Ωij = −1, then we
display this as

Ωii

gi
Ωjj

gj

(2.2)
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Ωii
gi

Ωjj

gj
Comments Mixed hyper content

1
sp(0)

2
su(n)

n ≤ 9, n %= 8

1
sp(0)θ

2
su(n)

n = 8; θ = 0,π

1
sp(0)

3
su(3)

1
sp(0)

k
so(n)

n ≤ 16; 2 ≤ k ≤ 4

1
sp(0)

2
so(1̂2)

1
sp(0)

k

g2
k = 2, 3

1
sp(0)

k
f4

2 ≤ k ≤ 5

1
sp(0)

k

e6
2 ≤ k ≤ 6

1
sp(0)

k

e7
2 ≤ k ≤ 8

1
sp(0)

12
e8

2
su(1)

1
sp(1)

1
2F in gj = sp(1)

2
su(1)

2
su(2)

1
2F in gj = su(2)

Table 4. List of all the possible edges between a gauge-theoretic and a non-gauge-theoretic node
that can appear in graphs characterizing 6d SCFTs. The theta angle of sp(0) is only displayed when
it is physically relevant.

Ωii
gi

Ωjj

gj

1
sp(0)

2
su(1)

2
su(1)

2
su(1)

Table 5. List of all the possible edges between two non-gauge-theoretic nodes that can appear in
graphs characterizing 6d SCFTs. The theta angle of sp(0) is not displayed since it is not physically
relevant.
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Ωii
gi

1
sp(0)

Ωkk
gk

Comments

2
su(2)

1
sp(0)

k
g

k ≥ 3; g = e7, e6, f4, g2, so(n ≤ 12)

k
su(3)

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = e6, f4, g2, so(n ≤ 10), su(n ≤ 6)

2
su(4)

1
sp(0)

k
g

k = 3, 4; g = g2, so(n ≤ 10)

k
so(7)

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = g2, so(n ≤ 9)

k
so(8)

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = g2, so(8)

k
so(9)

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = g2

k
g2

1
sp(0)

l
g

k, l ≥ 2; k + l ≥ 5; g = f4, g2

Table 6. List of all the possibilities for multiple neighbors of sp(0).

and, if Ωij = −2, then we display this as

Ωii

gi
Ωjj

gj
2 (2.3)

There are no edges between nodes i and j if Ωij = 0. All the possible edges are listed
in table 3 when both gi and gj are non-trivial, in table 4 when only one of gi and gj
is non-trivial, and in table 5 when both gi and gj are trivial.
Each edge corresponds to a hyper transforming in a mixed representation Rij =
Rij,i⊗Rij,j of gi⊕gj where Rij,i is a representation of gi and Rij,j is a representation
of gj . The possible Rij are shown in the third column of table 3. Note that we must
have ⊕jR

⊕dim(Rij,j)
ij,i ⊆ Ri as representations of gi for each node i.

In the case of Ωii = 1, gi = sp(ni), Ωjj = k, gj = so(7, 8) and Ωij = −1, there are two
possible mixed representations 1

2(F⊗F) or 1
2(F⊗S). We distinguish the case 1

2(F⊗S)
by denoting the corresponding edge as a dashed line. Notice that when gj = so(8),
the dashed edge is only physically relevant when it is a part of a configuration of form

1
sp(ni)

k
so(8)

1
sp(nk)

(2.4)

Otherwise, the dashed edge can be converted to the non-dashed edge by applying an
outer-automorphism of so(8).

• Multiple neighbors of sp(0): consider a node i with value 1
sp(0)

. Related to
the fact that the flavor symmetry algebra associated to this node is e8, it can be
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shown that its neighbors must satisfy ⊕jgj ⊆ e8 where only those j are included in
the sum for which Ωij = −1. In fact all such subalgebras are realized except6 for
so(13)⊕ su(2).
In the context of 6d SCFTs, it is not possible for sp(0) to have more than two
neighbors. We collect all the possibilities for multiple neighbors of sp(0) in table 6.

Notice that the relationship between ΣT and [Ωij ] is analogous to the relationship between
Dynkin graph and Cartan matrix of a simply laced Lie algebra.

3 Structure of 5d KK theories

3.1 Twists

Consider a QFT T that admits a discrete global symmetry group Γ. When we compactify
T on a circle, we have the option of “twisting” T around the circle. This means that we
introduce a holonomy γ ∈ Γ for the background gauge field corresponding to Γ. Note that
the number of distinct twists is not given by the number of elements in Γ, but rather by
the number of conjugacy classes in Γ. This is because two holonomies that are conjugate
in Γ are physically equivalent and thus lead to the same twist.

In this section, we will explore all the possible twists for 6d SCFTs. Each twist leads
to a different 5d KK theory.

3.2 Discrete symmetries from outer automorphisms

A general discrete symmetry of a 6d SCFT T is generated by combining two kinds of basic
discrete symmetries. We start by discussing the first kind of basic discrete symmetries.
These arise from outer automorphisms of gauge algebras gi.

su(n) for n ≥ 3, so(2m) for m ≥ 4 and e6 admit an order two outer automorphism
that we call O(2). It exchanges the roots in the following fashion

· · · · · ·su(2n), O(2):

· · · · · ·su(2n + 1), O(2):

6It can be shown that the embedding index of each neighboring gj inside e8 must be one. The only
possible embedding of so(13) ⊕ su(2) into e8 follows from first embedding so(13) ⊕ su(2) into so(16) as
a special maximal subalgebra and then embedding so(16) into e8 as a regular maximal subalgebra. The
embedding index of the su(2) factor under this embedding is two rather than one, thus so(13)⊕su(2) cannot
be realized as a neighbor of sp(0). The absence of so(13) ⊕ su(2) neighbor was first noticed in [39].
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g O(q) O(q) · Rg

su(m) O(2) F←→ F̄, Λn ←→ Λ̄n, S2 ←→ S̄2
so(2m) O(2) F −→ F, S←→ C

e6 O(2) F←→ F̄
so(8) O(3) F −→ S, S −→ C, C −→ F

Table 7. List of non-trivial outer automorphisms O(q) of g and their actions O(q) · Rg on
various irreducible representations Rg of g. F denotes fundamental representation, Λn denotes the
irreducible n-index antisymmetric representation, S2 denotes the irreducible 2-index symmetric
representation, and S and C denote irreducible spinor and cospinor representations. Bar on top of
a representation denotes the complex conjugate of that representation. F of so(2m) is left invariant
by the action of O(2).

· · ·so(2n), O(2):

e6, O(2):

so(8) also admits an order three outer automorphism which we call O(3). It cyclically
permutes the roots as shown below

so(8), O(3):

The full group of outer automorphisms of so(8) is the symmetric group S3 which can be
generated by combining O(2) and O(3). Note that O(2) and O(3) are not conjugate to each
other (since they have different orders) and hence we need to consider both of them.

The above action of an outer automorphism O(q) (for q = 2, 3) on the roots of g

translates to an action on the Dynkin coefficients of the weights for representations of g.
In other words, the action of O(q) can be viewed as an action on representations of g —
see table 7.
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An outer automorphism O(qi) of a gauge algebra gi ∈ T is a symmetry of T if

O(qi) · Ri = Ri (3.1)
O(qi) · Rij,i = Rij,i ∀j (3.2)

where O(qi) · R denotes the action of O(qi) on R. We should keep in mind that a hyper
in a representation R is the same as a hyper in representation R̄. So, Ri and Rij,i are
only defined up to complex conjugation on constituent irreps. Thus, whenever R ↔ R̄ in
table 7, it means that two distinct hypers in R are interchanged with each other under the
action of the outer automorphism.

As an example consider the 6d theory given by

2
su(n)

(3.3)

The theory includes 2n hypers in F. The outer automorphism O(2) of su(n) descends to
a discrete symmetry of the theory whose action on the hypermultiplets can be manifested
as follows. We divide the 2n hypers into two ordered sets such that each set contains n

hypers. Then we exchange these two sets with each other.

3.3 Discrete symmetries from permutation of tensor multiplets
Now we turn to a discussion of the second kind of basic discrete symmetries. These arise
from permutation of tensor multiplets i→ S(i) such that

gS(i) = gi (3.4)
ΩS(i)S(j) = Ωij (3.5)

for all i, j. This is a symmetry of T if

RS(i) . Ri (3.6)
RS(i)S(j) . Rij (3.7)

for all i, j.
As an example, consider the 6d theory given by

1
sp(n)

4
so(m)

1
sp(n)

4
so(p)

4
so(p)

(3.8)

The permutation

1
sp(n)

4
so(m)

1
sp(n)

4
so(p)

4
so(p)

(3.9)
is a symmetry of the theory.
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As another example, consider the 6d theory given by

2
su(n)

2
su(n)

2
su(m)

2
su(m)

(3.10)

The permutation

2
su(n)

2
su(n)

2
su(m)

2
su(m)

(3.11)

is a symmetry of the theory.
Now, consider a permutation S that is a symmetry of T. We can use the data of S to

convert [Ωij ] into another matrix [Ωαβ
S ]. Here α, β etc. parametrize orbits of nodes i under

the iterative action of S. To define a particular entry Ωαβ
S , we pick a node i lying in the

orbit α and let

Ωαβ
S =

∑

j∈β

Ωij (3.12)

where the sum is over all nodes j lying in the orbit β. Notice that the resulting matrix
[Ωαβ

S ] need not be symmetric but must be positive definite. It turns out for S associated
to 6d SCFTs that whenever Ωαβ

S %= Ωβα
S , then the smaller of the two entries is −1. Thus,

[Ωαβ
S ] is analogous to the Cartan matrix for a general (i.e. either simply laced or non-simply

laced) Lie algebra.
Let us compute the matrix [Ωαβ

S ] for the above example (3.8). To start with, [Ωij ] is





4 −1 0 0 0
−1 1 −1 0 0
0 −1 4 −1 0
0 0 −1 1 −1
0 0 0 −1 4





There are three orbits. The third node lies in the first orbit, the second and fourth nodes
lie in the second orbit, and the first and fifth nodes lie in the third orbit. Applying our
prescription (3.12), we find that [Ωαβ

S ] is





4 −2 0
−1 1 −1
0 −1 4




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Similarly, we can compute the matrix [Ωαβ
S ] for the above example (3.10). [Ωij ] is





2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2





and [Ωαβ
S ] is 

 1 −1
−1 2



 .

Now, we define a graph ΣS
T associated to [Ωαβ

S ]:

• Nodes: the nodes of ΣS
T are in one-to-one correspondence with the set of orbits α.

The value of node α is Ωii

gi
where i is a node of ΣT lying in the orbit α.

• Edges: let α %= β and let Ωαβ
S ≥ Ωβα

S . Then we place −Ωαβ
S number of edges between

nodes α and β. If Ωαβ
S = Ωβα

S , then the edges are undirected. If Ωαβ
S > Ωβα

S , then all
the edges are directed from α to β.

• Self-edges: let lα = Ωii−Ωαα
S where i is a node of ΣT lying in the orbit α. Then, we

introduce lα edges such that the source and target of each edge is the same node α.

ΣS
T can be understood as a folding7 of ΣT by the action of S. Observe that the relationship

between ΣS
T and [Ωαβ

S ] is analogous to the relationship between the Dynkin graph and
Cartan matrix for a general (i.e. either simply laced or non-simply laced) Lie algebra.

For our example (3.8), the folded graph ΣS
T is

4
so(m)

1
sp(n)

4
so(p)

2 (3.13)

and for (3.10), the folded graph ΣS
T is

2
su(n)

2
su(m)

(3.14)

We note that, starting from the data of ΣS
T, we can only reconstruct S up to conju-

gation. But this is enough to keep track of the twist associated to S. Thus, throughout
this paper, we will specify twists via folded graphs ΣS

T and will not refer to an explicit S

inducing the folding.
7Notice that, unlike the foldings of Dynkin diagrams, the foldings of graphs ΣT can lead to self-edges.
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3.4 General discrete symmetries
We now discuss twists associated to general discrete symmetries that combine the basic dis-
crete symmetries discussed in sections 3.2 and 3.3. That is, we consider actions of the form

(
∏

i

O(qi)
)

S (3.15)

where S is a permutation of the tensor multiplets and O(qi) is an outer automorphism
of order qi of gauge algebra gi, where each qi ∈ {1, 2, 3} and qi = 1 denotes the identity
automorphism. Eq. (3.15) is a symmetry of the 6d theory T only if

gS(i) . gi (3.16)
ΩS(i)S(j) = Ωij (3.17)

and

O(qS(i)) · Ri = RS(i) (3.18)
O(qS(i)) · RS(i)S(j),S(i) = Rij,i (3.19)

As in section 3.3, we associate the matrix [Ωαβ
S ] to the twist generated by the action

of (3.15).
As an example, consider the 6d SCFT

2
su(n)

2
su(m)

2
su(m)

(3.20)

Suppose we want to perform the outer-automorphism O(2) for the middle su(n) node.
Recall from the discussion around (3.3) that the outer automorphism of su(n) exchanges the
fundamental hypers in pairs. However, the graph in (3.20) indicates that the fundamental
hypers of the middle su(n) algebra are part of bifundamental representations formed by
taking the tensor product with the fundamental representations of the neighboring su(m)
algebras. Therefore, if we want O(2) to be a symmetry of the theory, we must permute the
two neighboring su(m) as well. Thus, O(2) by itself is not a symmetry of the theory, but
its combination with the permutation

2
su(n)

2
su(m)

2
su(m)

(3.21)

is a symmetry of the theory. Thus, we see that in general it is not possible to decompose
a general symmetry of the form (3.15) into more basic symmetries discussed earlier.

As another illustrative example, consider

1
sp(n)

4
so(2m)

4
so(2m)

(3.22)
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Consider sending the left so(2m) to the right so(2m) with an outer automorphism O(2),
and sending the right so(2m) to the left so(2m) without any outer automorphism. We can
represent this action as

1
sp(n)

4
so(2m)

4
so(2m)

O(1)

O(2) (3.23)

This action is a symmetry of the theory and is represented as

O(1)
1 O(2)

3 S (3.24)

in the notation of (3.15). Here we have labeled the nodes as 1, 2, 3 from left to right and
the subscript of O denotes the node it is acting at. We can also consider the action

1
sp(n)

4
so(2m)

4
so(2m)

O(2)

O(2) (3.25)

which is also a symmetry of the theory and is represented as

O(2)
1 O(2)

3 S (3.26)

in the notation of (3.15).
Now, let gα = gi and Ωαα = Ωii where i is a node of ΣT lying in the orbit α of S. Then

O(qi) can be viewed as an outer automorphism of gα. Let us define an outer automorphism
O(qα) of gα by

O(qα) =
∏

i∈α

O(qi) (3.27)

where each O(qi) on the right hand side is viewed as an outer automorphism of gα and the
O(qi) for all i lying in the orbit α are then multiplied with each other to produce the outer
automorphism O(qα) of gα. Notice that we have chosen some ordering of various i while
evaluating the product ∏i∈α O(qi). Different orderings produce different but conjugate
O(qα). Thus, we leave the ordering unspecified since we are only interested in the conjugacy
class of O(qα).
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Ωαα
gα Comments

1
su(n)(2) n = 3, 4

2
su(n)(2) n ≥ 3

3
su(3)(2)

4
so(2n)(2) n ≥ 5

k
so(8)(q) 1 ≤ k ≤ 4; q = 2, 3

2
so(10)(2)

2
so(1̂2)(2)

k
e(2)6 k = 2, 4, 6

2
su(n)(1)

n ≥ 1;non-geometric

Table 8. List of all the new nodes that can appear in graphs associated to 5d KK theories. We
also list all the possibilities where an edge starts and ends on the same node. The comment “non-
geometric” for the last entry refers to the fact that there is no completely geometric description of
this node. See also a node appearing in table 1. If a KK theory involves either of these two kinds
of nodes, then it does not admit a conventional geometric description.

We can now associate a graph ΣS,{qα}
T to the action of (3.15). We start from the graph

ΣS
T defined in section 3.3 and modify the values of the node α to Ωαα

S

g(qα)
α

where i is a node
of ΣT lying in the orbit α. The graph obtained after this simple modification is what we
refer to as ΣS,{qα}

T .
Note that the data of ΣS,{qα}

T is enough to reconstruct the action (3.15) up to conjuga-
tion. Thus, we will capture the twist associated to the action (3.15) by the graph ΣS,{qα}

T

and call the resulting 5d KK theory as TKK
S,{qα}.

For the example discussed around (3.20), ΣS,{qα}
T is

2
su(n)(2)

2
su(m)(1)

2 (3.28)
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Ωαα
g(qα)

α

Ωββ

g
(qβ)
β Comments

1
sp(nα)(1)

k

so(nβ)(2) nα ≤ nβ − 4− k; nβ ≤ 4nα + 14; 2 ≤ k ≤ 4

1
sp(nα)(1)

2
so(1̂2)(2) nα ≤ 6

2
su(nα)(1)

4
so(nβ)(2)

2
nα ≤ nβ − 8; nβ ≤ 2nα

2
su(nα)(1)

2
su(nβ)(1) nα ≤ 2nβ; nβ ≤ nα

1
sp(0)(1)

2
su(n)(2) 3 ≤ n ≤ 9, n %= 8

1
sp(0)(1)θ

2
su(8)(2) θ = 0,π

1
sp(0)(1)

3
su(3)(2)

1
sp(0)(1)

k
so(8)(q) 2 ≤ k ≤ 4; q = 2, 3

1
sp(0)(1)

k
so(10)(2) k = 2, 4

1
sp(0)(1)

4
so(2n)(2) n = 6, 7

1
sp(0)(1)

2
so(1̂2)(2)

1
sp(0)(1)

k
e(2)6 k = 2, 4, 6

2
su(n)(1)

2
su(1)(1)

n = 1, 2

Table 9. List of all the new undirected edges that can appear in graphs characterizing 5d KK
theories.
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Ωαα
g(qα)

α

Ωββ

g
(qβ)
β

e
Comments

1
sp(nα)(1)

k

so(nβ)(qβ)

2
nα ≤ nβ − 4− k; nβ ≤ 2nα + 10− 2qβ; k = 3, 4; qβ = 1, 2

1
sp(nα)(1)

3
so(7)(1)

2
nα = 1, 2

1
sp(1)(1)

3
g(1)2

2

1
sp(nα)(1)

4
so(nβ)(qβ)

3
nα ≤ nβ − 8; 3nβ ≤ 4nα + 17− qβ; qβ = 1, 2

2
su(nα)(1)

2
su(nβ)(1)

e
nα ≤ 2nβ; enβ ≤ 2nα; e = 2, 3

2
su(nα)(2)

2
su(nβ)(1)

2
nα ≤ 2nβ; nβ ≤ nα

2
g(1)2

2
su(2)(1)

e
e = 2, 3

2
so(7)(1)

2
su(2)(1)

e
e = 2, 3

3
so(7)(1)

2
su(2)(1)

2

3
so(7)(1)

1
sp(1)(1)

2

3
so(8)(2)

1
sp(1)(1)

2

k
so(nα)(qα)

1
sp(nβ)(1)

2
nα ≤ 4nβ + 16; 2nβ ≤ nα − 4− k; k = 3, 4; qα = 1, 2

4
so(nα)(qα)

1
sp(nβ)(1)

3
nα ≤ 4nβ + 16; 3nβ ≤ nα − 8; qα = 1, 2

Table 10. List of all the possible directed edges between two gauge-theoretic nodes that can
appear in graphs characterizing 5d KK theories. An arrow with e in the middle of it denotes e
edges directed in the direction of arrow. Solid edges arise from foldings of solid edges and dashed
edges arise from foldings of dashed edges. A partially dashed and partially solid edge with 2 in the
middle of it arises from a folding together of a dashed edge and a solid edge.
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Ωαα
g(qα)

α

Ωββ

g
(qβ)
β

e
Comments

1
sp(0)(1)

3
su(3)(q)

2
q = 1, 2

1
sp(0)(1)

3
so(7)(1)

2

1
sp(0)(1)

k
so(8)(1)

2
k = 3, 4

1
sp(0)(1)

3
g(1)2

2

3
su(3)(q)

1
sp(0)(1)

2
q = 1, 2

k
so(n)(q)

1
sp(0)(1)

e
n ≤ 16; 2 ≤ e ≤ k − 1; k = 3, 4; q = 1, 2

3
g(1)2

1
sp(0)(1)

2

k
f(1)4

1
sp(0)(1)

e
2 ≤ e ≤ k − 1; 3 ≤ k ≤ 5

k
e(q)6

1
sp(0)(1)

e
2 ≤ e ≤ k − 1; 3 ≤ k ≤ 6; q = 1, 2

k
e(1)7

1
sp(0)(1)

e
2 ≤ e ≤ k − 1; 3 ≤ k ≤ 8

12
e(1)8

1
sp(0)(1)

e
2 ≤ e ≤ 11

2
su(n)(1)

2
su(1)(1)

e
n = 1, 2; e = 2, 3

Table 11. List of all the possible directed edges involving at least one non-gauge-theoretic node
that can appear in graphs characterizing 5d KK theories.

Similarly, for (3.23), ΣS,{qα}
T is

1
sp(n)(1)

4
so(2m)(2)

2 (3.29)

However, for (3.25), ΣS,{qα}
T is

1
sp(n)(1)

4
so(2m)(1)

2 (3.30)
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Ωii
g(qi)i

1
sp(0)(1)

Ωkk

g(qk)k
Comments

2
su(2)(1)

1
sp(0)(1)

k
g(q)

k ≥ 3; g(q) = e(2)6 , so(8, 10)(2), so(8)(3)

k
su(3)(1)

1
sp(0)(1)

l
g(q)

k, l ≥ 3; k + l ≥ 5; g(q) = so(8)(2), so(8)(3), su(n ≤ 4)(2)

k
su(3)(2)

1
sp(0)(1)

l
g(1)

k, l ≥ 2; k + l ≥ 5; g = f4, g2, so(n ≤ 9), su(4)

k
su(3)(2)

1
sp(0)(1)

l
g(2)

k, l ≥ 2; k + l ≥ 5; g = e6, so(8, 10), su(n ≤ 6)

2
su(4)(2)

1
sp(0)(1)

k
g(q)

k = 3, 4; g(q) = g(1)2 , so(n ≤ 9)(1), so(8, 10)(2)

k
so(8)(2)

1
sp(0)(1)

l
g(q)

k, l ≥ 2; k + l ≥ 5; g(q) = g(1)2 , su(4)(1), so(7)(1), so(8)(2)

k
so(8)(3)

1
sp(0)(1)

l
g(q)

k, l ≥ 2; k + l ≥ 5; g(q) = su(3)(2), so(8)(3)

Table 12. List of all the new possibilities for multiple neighbors of sp(0)(1) connected to it by
undirected edges.

which is the same as ΣS,{qα}
T for the symmetry

1
sp(n)

4
so(2m)

4
so(2m)

(3.31)

which does not involve any outer automorphisms. Thus, according to our claim, (3.25)
and 3.31) must be in the same conjugacy class. Let us demonstrate it explicitly. Conju-
gating (3.26) by O(2)

1 , we get

O(2)
1 (O(2)

1 O(2)
3 S)O(2)

1 (3.32)

= O(2)
3 SO(2)

1 (3.33)

= O(2)
3 O(2)

3 S (3.34)
= S (3.35)

Thus, the KK theories corresponding to (3.25) and (3.31) must be the same, and we denote
it by the folded graph (3.30).

In a similar fashion, by studying various 6d SCFTs and their symmetries, we can isolate
all the possible ingredients that can appear in graphs of the form ΣS,{qα}

T associated to 5d
KK theories:
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• First of all, the nodes listed in tables 1 and 2 are all allowed. We simply write each
gauge algebra g appearing in table 1 as g(1).

• Similarly, the edges appearing in tables 3, 4 and 5 are all allowed with each gauge
algebra being written as g(1).

• The new nodes that can appear in graphs associated to 5d KK theories but do not
appear in graphs associated to 6d SCFTs are listed in table 8.

• The new undirected edges appearing for graphs associated to 5d KK theories are
listed in table 9.
The configuration

1
sp(nα)(1)

k

so(nβ)(2)

(3.36)

for nβ = 4nα+16 and nα ≥ 0 is not allowed since the choice of theta angle for sp(nα)
in the associated 6d theory is correlated to the choice of a spinor representation of
the neighboring so(4nα +16). Thus, the outer automorphism O(2) of so(4nα +16) is
not a symmetry of the theory.8

• The directed edges between two nodes both carrying a non-trivial gauge algebra are
listed in table 10.
The configuration

1
sp(nα)(1)

k

so(nβ)(2)
2 (3.37)

with nβ = 2nα+8 is not allowed. This configuration descends from (3.23) with n = nα

and m = nα + 4. Recall that the choice of theta angle of the gauge algebra sp(nα)
is equivalent to the choice of a spinor representation of its flavor symmetry algebra
so(4nα + 16). But so(2nα + 8) ⊕ so(2nα + 8) subalgebra of so(4nα + 16) is gauged.
The S of so(4nα + 16) decomposes as (S⊗ C)⊕ (C⊗ S) of so(2nα + 8)⊕ so(2nα + 8)
which is sent to (C⊗C)⊕ (S⊗S) of so(2nα +8)⊕ so(2nα +8) by the action depicted
in (3.23). Thus, (3.23) is not a symmetry when n = nα and m = nα + 4.
For similar reasons, the configuration

1
sp(nα)(1)

k

so(nβ)(2)
3 (3.38)

with 3nβ = 4nα + 16 is not allowed.
The KK theory

3
so(8)(2)

1
sp(1)(1)

2 (3.39)
8The authors thank Gabi Zafrir for a discussion on this point.
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arises from the 6d SCFT

3
so(8)

1
sp(1)

1
sp(1)

(3.40)

by performing the outer automorphism O(2) of so(8) which permutes F and S, and
hence induces the exchange of the two sp(1).

• Other kinds of directed edges are listed in table 11.
Due to similar reasons as explained above, the configuration

1
sp(0)(1)

k
so(8)(2)

2 (3.41)

is not allowed.

• There are various kinds of possibilities for multiple neighbors of sp(0)(1). All of the
possibilities listed in table 6 are allowed with the substitution of g(1) in place of every
trivial or non-trivial algebra g appearing in that table. New possibilities involving
undirected edges are listed in table 12. These are obtained by performing outer
automorphisms on the possibilities listed in table 6. However, some of the outer
automorphisms do not yield a symmetry of the theory.
For example, consider the decomposition of the adjoint 248 of e8 under su(3)⊕ e6

248→ (8,1)⊕ (1,78)⊕ (3,27)⊕ (3′,27′) (3.42)

It can be seen from the above decomposition that neither the outer automorphism of
su(3) nor the outer automorphism of e6 is a symmetry of the decomposition, implying
that neither the configuration

k
su(3)(2)

1
sp(0)(1)

l
e(1)6

(3.43)

nor the configuration

k
su(3)(1)

1
sp(0)(1)

l
e(2)6

(3.44)

is an allowed KK theory. However, the configuration

k
su(3)(2)

1
sp(0)(1)

l
e(2)6

(3.45)

is an allowed KK theory since the combined outer automorphism of su(3) and e6
is indeed a symmetry of the decomposition (3.42). Correspondingly, neither (3.43)
nor (3.44) appears in the table 12, while (3.45) does appear in table 12.
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Similarly, the reader can check that the following configurations do not give rise to
allowed KK theories:

k
so(8)(2)

1
sp(0)(1)

l
so(8)(q)

(3.46)

for q = 1, 3. However, q = 2 is allowed.

k
su(4)(p)

1
sp(0)(1)

l
so(10)(q)

(3.47)

for (p, q) equal to (1, 2) and (2, 1). However, (1, 1) and (2, 2) are allowed.

k
su(3)(p)

1
sp(0)(1)

l
so(10)(q)

(3.48)

for (p, q) equal to (1, 2) and (2, 1).

k
su(3)(p)

1
sp(0)(1)

l
su(5, 6)(q)

(3.49)

for (p, q) equal to (1, 2) and (2, 1).

k
su(2)(1)

1
sp(0)(1)

l
so(12)(2)

(3.50)

k
su(4)(p)

1
sp(0)(1)

l
so(8)(3)

(3.51)

for p = 1, 2.

k
so(7)(1)

1
sp(0)(1)

l
so(8)(3)

(3.52)

• It is not possible for sp(0)(1) to have multiple neighbors when one of the neighbors
is connected to it by a directed edge going outwards from sp(0)(1). This is simply a
consequence of the fact that sp(0) cannot have three neighbors in the context of 6d
SCFTs.
However, it is possible for sp(0)(1) to have multiple neighbors with some neighbors
having directed edges pointing inwards towards sp(0)(1). These possibilities can be
simply obtained by replacing one or more undirected edges appearing in tables 6
and 12 by suitable directed edges (pointing inwards) taken from table 11. One has to
ensure that the matrix associated to the resulting configuration is positive definite,
which disallows some substitutions. We do not pursue a full classification of such
cases since they won’t be useful in this paper. Later on, in section 5.4.4, we will
provide a general prescription to obtain the gluing rules associated to such directed
edges from the gluing rules associated to their “parent” undirected edges.
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g O(q) h Rg → Rh

su(2m) O(2) sp(m) F→ F, F̄→ F, Λ2 → Λ2 ⊕ 1
su(2m+ 1) O(2) sp(m) F→ F⊕ 1, F̄→ F⊕ 1
so(2m) O(2) so(2m− 1) F→ F⊕ 1, S→ S, C→ S

e6 O(2) f4 F→ F⊕ 1, F̄→ F⊕ 1
so(8) O(3) g2 F→ F⊕ 1, S→ F⊕ 1, C→ F⊕ 1

Table 13. The table displays the invariant algebra h when g is quotiented by O(q). An irrep Rg of
g decomposes to an irrep Rh of h and this decomposition is displayed (for representations relevant
in this paper) in the column labeled Rg → Rh. 1 denotes the singlet representation.

4 Prepotential for 5d KK theories

The goal of this section is to propose a formula for the prepotential of a 5d KK theory
TKK
S,{qα} starting from the tensor branch description of the corresponding 6d SCFT T.

4.1 Prepotential
Compactify a 6d SCFT T on a circle with a twist S, {qα} around the circle. Let us analyze
the low energy theory. Every node α in ΣS,{qα}

T gives rise to a low energy 5d gauge algebra
hα = gα/O(qα) which is the subalgebra of gα left invariant by the action of outer automor-
phism O(qα). In this paper, our choice of outer automorphisms is such that the invariant
subalgebras are those listed in table 13. For each node α, we obtain an additional u(1)α

gauge algebra in the low energy 5d theory coming from the reduction of a tensor multiplet
Bi on the circle where i lies in the orbit α.

Now we determine the spectrum of hypermultiplets charged under ⊕αhα under the low
energy 5d theory. First of all, for every node i in 6d theory, we define Ti = ⊕jR

⊕dim(Rij,j)
ij,i .

Recall that Ti ⊆ Ri and hence the 6d theory contains hypermultiplets charged under
representation Si of gi where Si is defined such that Si ⊕ Ti = Ri. Si is the representation
formed by those hypers that are only charged gi and not under any other gauge algebra gj
with j %= i.

As detailed in table 13, irreducible representations Rgα of gα can be viewed as irre-
ducible representations of Rhα . We can thus view hypers transforming in representation
Si of gi as transforming in a representation of hα. Let us denote this representation of
hα by S̃α. The outer automorphism O(qα) then permutes constituent irreps inside S̃α and
thus acts on S̃α as an automorphism. The low energy 5d theory then contains hypers
transforming in the representation

Sα := S̃α/O(qα) (4.1)

These hypers are only charged under hα and not under any other gauge algebra hβ with
β %= α.

Now consider other hypermultiplets that are charged under multiple gauge algebras in
the 6d theory. These descend to hypermultiplets charged under multiple gauge algebras
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in the low energy 5d theory plus some hypers only charged under the individual algebras.
Consider the mixed representation Rij = Rij,i ⊗ Rij,j of gi ⊕ gj in the 6d theory. Let
i and j lie in orbits α and β respectively. Let Rij,i decompose as Rαβ,α ⊕ nαβ,α1 when
viewed as a representation of hα, where Rαβ,α is the full subrepresentation that is charged
non-trivially under hα. Similarly, let Rij,j decompose as Rαβ,β ⊕ nαβ,β1 when viewed as a
representation of hβ, where Rαβ,β is the full subrepresentation that is charged non-trivially
under hβ. Then, under the twist, Rij descends to a mixed representation Rαβ of hα ⊕ hβ

plus representations Sαβ,α and Sαβ,β of hα and hβ respectively. Here Rαβ = Rαβ,α⊗Rαβ,β ,
Sαβ,α = nαβ,βRαβ,α, and Sαβ,β = nαβ,αRαβ,β .

In addition to the above, we also obtain hypers in the symmetric product Sym2(Rij,i)
for all j %= i such that both j and i are in the same orbit α. Thus, the full representation
Rα formed by hypers under hα is

Rα = ⊕j∈αSym2(Rij,i)|hα ⊕ Sα ⊕β

(
R⊕dim(Rαβ,β)

αβ,α ⊕ Sαβ,α

)
(4.2)

where Sym2(Rij,i)|hα means that we view Sym2(Rij,i) as a representation of hα. Note that
in the above expression, i is a fixed node in the orbit α, j cannot equal i, and β cannot
equal α. There are no hypers charged under u(1)α. Just as the representations Ri and Rij

for all i and j determine the full matter content for 6d SCFTs, the representations Rα and
Rαβ for all α and β determine the full matter content for 5d KK theories.

As an example, let us determine the low energy 5d theory for (3.23). The 5d gauge
algebra is h = sp(n) ⊕ so(2m − 1). A half-bifundamental of sp(n) ⊕ so(2m) decomposes
as a half-bifundamental of sp(n)⊕ so(2m− 1) plus a half-fundamental of sp(n). Thus, the
two half-bifundamentals between the sp(n) and the two so(2m) in (3.23) descend to a half-
bifundamental of h plus a half-fundamental of sp(n) in the 5d theory. There are 2m−8−n

extra fundamentals of the left so(2m) in (3.23) not charged under any other gauge algebra.
Similarly, there are 2m−8−n extra fundamentals of the right so(2m) in (3.23) not charged
under any other gauge algebra. These two sets of fundamentals descend to 2m − 8 − n

fundamentals of so(2m − 1) in the 5d theory. We also obtain 2m − 8 − n singlets that
decouple and so we ignore them. Finally, there are 2n + 8 − 2m extra fundamentals of
sp(n) in (3.23) not charged under any other gauge algebra. These hypers descend to
2n+8− 2m extra fundamentals of sp(n) in the low energy 5d theory that are not charged
under so(2m−1). To recap, the low energy 5d theory is an sp(n)⊕so(2m−1) gauge theory
with a half-bifundamental plus 4n + 17 − 4m half-fundamentals of sp(n) plus 2m − 8 − n

fundamentals of so(2m− 1).
As another example, let us determine the low energy 5d theory for (3.14). The two

su(m) get identified to a single su(m) algebra. Similarly, the two su(n) get identified to a
single su(n) algebra. Thus the 5d gauge algebra is h = su(n)⊕ su(m). The bifundamentals
of su(m)⊕su(n) descend to a single bifundamental of h. The bifundamental of su(n)⊕su(n)
descends to S2 of su(n). Furthermore, we obtain n −m extra fundamentals of su(n) and
2m− n extra fundamentals of su(m). Thus, the low energy 5d theory is an su(n)⊕ su(m)
gauge theory with a bifundamental plus (2m− n)F of su(m) plus (n−m)F⊕ S2 of su(n).
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The low energy 5d gauge theory also contains tree-level Chern-Simons terms that arise
from the reduction of (2.1) on the circle. These can be written as

Ωαβ
S A0,α ∧ tr(F 2

β ) (4.3)

where A0,α is the gauge field corresponding to the u(1)α obtained by reducing Bα on the
circle and Fβ is the gauge field strength for hβ. In writing (4.3), we have used the fact that
the index of hβ in gβ is one which is true for our choice of h listed in table 7. Eq. (4.3)
contributes the following tree-level term to the prepotential

6F tree
S,{qα} = 6

∑

α,β

1
2Ωαβ

S φ0,α
(
Kab

β φa,βφb,β

)
(4.4)

where φ0,α is the scalar living in the vector multiplet corresponding to u(1)α and φa,β

are scalars living in the vector multiplets corresponding to u(1)a,β which parametrize the
Cartan of hβ. Here Kab

β is the Killing form on hβ normalized such that its diagonal entries
are minimum positive integers while keeping all the other entries integer valued.

Let h = ⊕αhα be the total gauge algebra visible at low energies. The low energy
hypermultiplets form some representation R of h which decomposes into irreducible repre-
sentations of h as R = ⊕fRf . Note that it is possible to have f %= f ′ such that Rf = Rf ′ .
In other words, the index f distinguishes multiple copies of representation Rf . Now we
can add the one-loop contribution to the prepotential (4.4) to obtain

6FS,{qα} =
∑

α,β

3Ωαβ
S φ0,α

(
Kab

β φa,βφb,β

)
+ 1

2




∑

r

|r · φ|3 −
∑

f

∑

w(Rf )
|w(Rf ) · φ +mf |3





(4.5)
where r are the roots of h = ⊕αhα, w(Rf ) parametrize weights of Rf and mf ∈ R is a mass
term for each full9 hypermultiplet f . The notation w · φ denotes the scalar product of the
Dynkin coefficients of the weight w with Coulomb branch parameters. Note that similar
approaches for computing prepotentials of 5d theories have appeared in the literature —
see for example [40–42].

In (4.5) we must impose that mass terms for hypers belonging to Sαβ,α and Sαβ,β

equal the mass term for hypers belonging to Rαβ . This is because Rαβ , Sαβ,α and Sαβ,β

all descend from the same 6d representation Rij which has only a single u(1) symmetry
rotating it. The Wilson lines for this u(1) around the compactification circle gives rise to
the mass terms for Rαβ , Sαβ,α and Sαβ,β , and hence all these mass terms must be equal.

We propose that (4.5) is the full exact prepotential for TKK
S,{qα} where we have ignored

the terms involving the mass parameter 1
R where R is the radius of compactification. We

are justified in doing so since these terms do not play any role in this paper. Moreover,
only the part of 6FS,{qα} that is cubic in Coulomb branch parameters φa,α is relevant to
the discussion in this paper; so, for convenience, we denote the part of the prepotential
cubic in Coulomb branch parameters by 6Fφ

S,{qα}.

9Half-hypermultiplets do not admit mass parameters unless completed into a full hypermultiplet.
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Notice that fixing the relative values of φa,α and mf fixes the signs of the terms inside
absolute values in (4.5). As the relative values of φa,α and mf are changed, the sign of
some of the terms in (4.5) changes. This leads to jumps in the coefficients of various terms
in the resulting 6Fφ

S,{qα}. This means that different relative values of φa,α and mf lead to
different phases inside the Coulomb branch of the 5d KK theory.

Let us illustrate through a simple example of the KK theory specified by the graph

2
su(3)(1)

(4.6)

This theory has six hypers in fundamental of su(3). The Dynkin coefficients of the positive
roots of su(3) are (2,−1), (1, 1) and (−1, 2). The Dynkin coefficients for the weights of
fundamental are (1, 0), (−1, 1) and (0,−1). The Killing form is



 2 −1
−1 2





and Ωαβ
S is a 1× 1 matrix which equals 2. Without loss of generality, we can take r · φ for

positive roots to be positive. This implies that r · φ for negative roots is negative.
Let us first fix all the mass terms to be zero. Then the first weight (1, 0) contributes

with a positive sign since the positivity of r ·φ for positive roots implies that φ1 is positive.
Similarly, the third weight (0,−1) contributes with a negative sign to the prepotential.
However, the sign of second weight (−1, 1) cannot be determined uniquely, and hence the
theory has two phases when all mass parameters vanish. These two phases are distinguished
by the sign s of the contribution due to the weight (−1, 1). The prepotential can be written
as

6Fφ = 6F = 12φ0
(
φ2
1 + φ2

2 − φ1φ2
)
+
(
(2φ1 − φ2)3 + (φ1 + φ2)3 + (2φ2 − φ1)3

)

− 3
(
s (φ2 − φ1)3 + φ3

1 + φ3
2
)

(4.7)

Here 12φ0
(
φ2
1 + φ2

2 − φ1φ2
)
is the contribution coming from the Green-Schwarz term in

6d, (2φ1 − φ2)3 + (φ1 + φ2)3 + (2φ2 − φ1)3 is the contribution coming from the positive
and negative roots, and −3

(
s (φ2 − φ1)3 + φ3

1 + φ3
2
)
is the contribution coming from the

weights of six hypers in fundamental.
When we turn on mass parameters, the sign of the weights corresponding to different

hypers can be changed. For example, consider turning on a mass parameter for one of the
fundamentals m1 while keeping the mass parameters for the other five fundamentals zero.
Now we obtain contributions from terms of the form |m1+φ1|, |m1−φ1+φ2| and |m1−φ2|.
Depending on the value of m1, we go through various new phases of the theory which are
parametrized by choices of signs of these three terms. For example, suppose that m1 is
positive and very large, so that all the three terms are positive. Moreover, assume that
φ2 − φ1 is positive, so that s = +1. Then the resulting phase is governed by the following
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prepotential

6F = 12φ0
(
φ2
1 + φ2

2 − φ1φ2
)
+
(
(2φ1 − φ2)3 + (φ1 + φ2)3 + (2φ2 − φ1)3

)
(4.8)

− 5
2
(
(φ2 − φ1)3 + φ3

1 + φ3
2
)
− 1

2
(
(φ2 − φ1 +m1)3 + (φ1 +m1)3 + (−φ2 +m1)3

)

which implies that the truncated prepotential is

6Fφ = 12φ0
(
φ2
1 + φ2

2 − φ1φ2
)
+
(
(2φ1 − φ2)3 + (φ1 + φ2)3 + (2φ2 − φ1)3

)

− 3
(
(φ2 − φ1)3 + φ3

1
)
− 2φ3

2 (4.9)

We caution the reader that there can be phases of the KK theory which cannot be
traversed by changing the signs of various contributions to the prepotential. In other
words, they are not visible to the canonical low energy gauge theory that we associated to
the KK theory in the beginning of this subsection. We will refer to such phases as non-
gauge theoretic. This terminology does not mean that the low energy theory governing such
phases cannot be understood as Coulomb branch of a gauge theory. Rather it simply means
that low energy theory governing such phases cannot be understood as part of Coulomb
branch of the canonical gauge theory associated to the corresponding KK theory.

4.2 Shifting the prepotential
Consider a 6d theory T with gauge algebras gi on its tensor branch. Consider further
compactifying T on a circle of finite size without a twist. On a generic point of the resulting
5d Coulomb branch, the massive BPS spectrum includes W-bosons for the corresponding
untwisted affine gauge algebras g(1)i . In other words, the abelian gauge algebra visible at
low energies on the Coulomb branch is ⊕au(1)a,i parametrizing the Cartan of gi plus a
u(1)0,i responsible for affinization. The u(1)i arising from the reduction of tensor multiplet
Bi is central to ⊕au(1)a,i ⊕ u(1)0,i. The untwisted Lie algebras are listed in figure 1 along
with their Coxeter and dual Coxeter labels.

We now generalize the above statements to the twisted case. Consider compactifying
T on a circle of finite size with a twist S, {qα}. On a generic point of the resulting 5d
Coulomb branch, the massive BPS spectrum includes W-bosons for the corresponding
twisted/untwisted affine gauge algebras g(qα)

α . In other words, the abelian gauge algebra
visible at low energies on the Coulomb branch is ⊕au(1)a,α parametrizing the Cartan of hα

plus a u(1)0,α responsible for affinization. The u(1)α arising from the reduction of tensor
multiplet Bi (with i in orbit of α) is central to ⊕au(1)a,α⊕u(1)0,α. The twisted Lie algebras
are listed in table 2 along with their Coxeter and dual Coxeter labels.

The charge under u(1)b,α (corresponding to a simple co-root e∨
b ) of a W-boson Wa

(corresponding to simple root ea of g(qα)
α ) is given by the element Aab of the Cartan matrix.

Now consider the u(1) embedding into ⊕rα
b=0u(1)b,α by the map eiθ → ⊕rα

b=0
(
eid

∨
b θ
)

b
where

(
eid

∨
b θ
)

b
is the element eid

∨
b θ of u(1)b,α and d∨

b are dual Coxeter labels of g(qα)
α listed in

figures 1 and 2. Since all the W-bosons Wa are uncharged under this u(1), it follows that
this u(1) can be identified with the central u(1)α. The charge of a particle nα under u(1)α

can be written as ∑rα
b=0 d

∨
b nb,α where nb,α is the charge of the particle under u(1)b,α.
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su(n)(1): e
(1)
6 :

· · ·
1

1

1 1 1 1 1
1 1 1 1 1 1

1

2

1 2 3 2 1

1

1 2 3 2 1

2

1

so(2n + 1)(1): e
(1)
7 :

· · ·
1 2 2 2 2 1

1

1 2 2 2 2 2

1 2

1 2 3 4 3 2 1
1 2 3 4 3 2 1

2

sp(n)(1): e
(1)
8 :

· · ·
1 1 1 1 1 1
1 2 2 2 2 1

3

2 12 4 6 5 4 3

3

2 12 4 6 5 4 3

so(2n)(1): f
(1)
4 :

· · ·

1

2 2 2 2

1

11

1

2 2 2 2

1

11
1 2 3 2 1
1 2 3 4 2

11 2
13 2

g(1)2 :

Figure 1. Untwisted affine Lie algebras. The affine node is shown as a hollow circle. The numbers
in black d∨

a denote the column null vector for the Cartan matrix, popularly known as dual Coxeter
labels. The numbers in red da denote the row null vector for the Cartan matrix, popularly known
as Coxeter labels.
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su(2n + 1)(2): e
(2)
6 :

· · ·
1 2 2 2 2 2
2 2 2 2 2 1

1 2 3 4 2
1 2 3 2 1

so(2n)(2): so(8)(3):

· · ·
1 2 2 2 2 1
1 1 1 1 1 1

3 2 1
1 2 1

su(2n)(2): su(4)(2):

· · ·
1 2 2 2 2 2

1

1 2 2 2 2 1

1
1 2 1
1 1 1

1 2
2 1

su(3)(2):

Figure 2. Twisted affine Lie algebras. The affine node is shown as a hollow circle. The numbers
in black d∨

a denote the column null vector for the Cartan matrix, popularly known as dual Coxeter
labels. The numbers in red da denote the row null vector for the Cartan matrix, popularly known
as Coxeter labels. The total number of nodes for su(2n+ 1)(2) is n+ 1, for so(2n)(2) is n, and for
su(2n)(2) is n+ 1.

The truncated prepotential 6Fφ
S,{qα} is written in terms of Coulomb branch parameters

φb,α (with 1 ≤ b ≤ rα) corresponding to u(1)b,α and φ0,α corresponding to u(1)α. To
facilitate comparison with geometry, we wish to write the prepotential in terms of Coulomb
branch parameters corresponding to u(1)b,α for 0 ≤ b ≤ rα. This is achieved by performing
the following replacement in 6Fφ

S,{qα}

φb,α → φb,α − d∨
b φ0,α (4.10)

for all 1 ≤ b ≤ rα and for all α.10 We will call the prepotential obtained after this shift
as F̃S,{qα}. The Coulomb branch parameter φ0,α in F̃S,{qα} corresponds to u(1)0,α rather
than u(1)α.

For illustrative purposes, we note that the shift for our example (4.6) is

φ1 → φ1 − φ0

φ2 → φ2 − φ0

10Note that the shift (4.10) has been studied before the in the literature in relation to resolutions of
elliptically fibered Calabi-Yau threefolds; in these examples, the effect of the shift is to expand the Kähler
form J in basis of primitive divisors — see for example [43].
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which means that the shifted prepotential corresponding (4.7) is

6F̃ = 8φ3
0 + 8φ3

1 + 2φ3
2 − 6φ1φ

2
0 + 6φ1φ

2
2 − 6φ2φ

2
0 − 12φ2φ

2
1 (4.11)

where we have chosen the phase s = +1.
The shifted prepotential for (4.9) is

6F̃ = 7φ3
0 + 8φ3

1 + 3φ3
2 − 6φ1φ

2
0 + 6φ1φ

2
2 − 3φ2φ

2
0 − 3φ0φ

2
2 − 12φ2φ

2
1 (4.12)

A Mathematica notebook accompanying the submission of this paper can be used to
compute the contribution to 6F̃ (in any gauge-theoretic phase) from a single node or two
nodes connected by an edge. Using these two results, one can write the contribution to
6F̃ from two nodes connected by an edge as contributions from the two nodes alone and
a contribution from the edge. Thus, we can figure out what is the contribution to 6F̃ by
each possible edge. Combining the contributions from the nodes and the edges, one can
obtain 6F̃S,{qα} for any arbitrary graph ΣS,{qα}

T . More details and the instructions for using
the notebook can be found in appendix E.

5 Geometries associated to 5d KK theories

In this section, we will show that we can associate (at least one) genus-one fibered Calabi-
Yau threefold XS,{qα} to every 5d KK theory11 TKK

S,{qα}. Compactifying M-theory on XS,{qα}
produces the Coulomb branch of TKK

S,{qα}. Some of the results appearing below also appeared
in [3–5, 44–51]

5.1 General features

In this subsection, we start with a description of general features of the geometric structure
of XS,{qα} and the relationship between this geometry and the low energy effective theory
governing the Coulomb branch of the KK theory TKK

S,{qα}.
We will show that XS,{qα} can be realized as a local neighborhood of a collection of

irreducible compact holomorphic surfaces intersecting with each other pairwise transversely.
As we will see, the surfaces fall into families indexed by α. We denote the irreducible
surfaces in each family α as Sa,α where 0 ≤ a ≤ rα (where rα is the rank of hα). The
Kahler parameters associated to Sa,α are identified as the Coulomb branch parameters
φa,α of the corresponding 5d KK theory discussed in the previous section. Whenever hα is
trivial, the rank of hα is zero and hence there is only a single surface S0,α associated to the
node α in that case.

5.1.1 Triple intersection numbers and the prepotential
A key role in the relationship between XS,{qα} and TKK

S,{qα} is played by the shifted pre-
potential 6F̃S,{qα}. The coefficients caα,bβ,cγ of φa,αφb,βφc,γ in 6F̃S,{qα} capture the triple

11We remind the reader that this statement is not completely true for KK theories involving the last node
in table 8. For such KK theories, we only propose an algebraic description whose structure closely mimics
the structure of genus-one fibered Calabi-Yau threefolds to be discussed in the next subsection 5.1.
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intersection numbers of surfaces in XS,{qα} as follows:

caα,aα,aα = Sa,α · Sa,α · Sa,α (5.1)
caα,aα,bβ = 3Sa,α · Sa,α · Sb,β (5.2)
caα,bβ,cγ = 6Sa,α · Sb,β · Sc,γ (5.3)

where (a,α), (b,β), (c, γ) denote distinct non-equal indices.
A triple intersection product of three surfaces can be computed via intersection num-

bers inside any one of the three surfaces. To explain it, let us first define the notion of
“gluing curves”. Consider the intersection locus Laα,bβ between two distinct surfaces Sa,α

and Sb,β in XS,{qα}. Laα,bβ splits into geometrically irreducible components as ∑i Li
aα,bβ .

Each Li
aα,bβ appears as an irreducible curve Ci

a,α;b,β in Sa,α and an irreducible curve Ci
b,β;a,α

in Sb,β . In other words, we can manufacture the intersection of Sa,α and Sb,β by identifying
the curves

Ci
a,α;b,β ∼ Ci

b,β;a,α (5.4)

with each other for all i. Identifying pairs of curves in the above fashion can be thought
of as “gluing together” two surfaces along those curves.12 The reducible curve Ca,α;b,β :=
∑

iC
i
a,α;b,β is called the “total gluing curve” in Sa,α for the intersection of Sa,α and Sb,β .

Similarly, Cb,β;a,α := ∑
iC

i
b,β;a,α is called the total gluing curve in Sb,β for the intersection

of Sa,α and Sb,β .
As two distinct surfaces Sa,α and Sb,β can intersect each other, so can a single surface

Sa,α intersect itself. Much as above for the intersection of two distinct surfaces, the self-
intersection of Sa,α can be captured in terms of gluings

Ci
a,α ∼ Di

a,α (5.5)

where Ci
a,α and Di

a,α are irreducible curves in Sa,α.
Then the triple intersection numbers can be expressed as:

Sa,α · Sa,α · Sa,α = K ′
a,α ·K ′

a,α (5.6)
Sa,α · Sa,α · Sb,β = K ′

a,α · Ca,α;b,β = C2
b,β;a,α (5.7)

Sa,α · Sb,β · Sc,γ = Ca,α;b,β · Ca,α;c,γ = Cb,β;c,γ · Cb,β;a,α = Cc,γ;a,α · Cc,γ;b,β (5.8)

where
K ′

a,α := Ka,α +
∑

i

(
Ci
a,α +Di

a,α

)
(5.9)

and Ka,α denotes the canonical class of Sa,α.
As an illustrative example consider the KK theory (4.6) for which the shifted prepoten-

tial in a particular phase is displayed in (4.11). We propose that the associated geometry
is as follows. Since there is a single node, we drop the index α and only display the index
a. The surfaces are S0 = F0, S1 = F2, S2 = F6

4. The gluing curves between S0 and S1 are
12On multiple occasions throughout this paper, we abuse the language and denote the identification of

two curves as “gluing” of the two curves.
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C0;1 = e, C1;0 = e. The gluing curves between S1 and S2 are C1;2 = h,C2;1 = e. The gluing
curves between S2 and S0 are C2;0 = h−

∑
xi, C0;2 = e.

Now we can check that the intersections of these curves indeed give rise to the various
coefficients in (4.11):

• First of all, recall from (A.18) that K2 = 8− b for Fb
n. Indeed, the coefficients of φ3

a

in (4.11) equal K2
a .

• One third the coefficient of φ0φ2
1 is zero which matches C2

0;1 = (e2)S0 where (e2)S0

denotes that the intersection number e2 is computed inside S0 and that in particular
the curve e is inside S0. The coefficient also matches K1 · C1;0 = (K · e)S1 = 0. One
third of the coefficient of φ2φ2

0 is −2 which indeed matches C2
2;0 =

(
(h−∑xi)2

)
S2

=(
h2 −

∑
x2i
)
S2

= 4− 6 = −2 and K0 ·C0;2 = (K · e)S0 = −2. Similarly, we can check
the matching of such intersection numbers with one third the coefficients of other
terms of the form φaφ2

b .

• One sixth the coefficient of φ0φ1φ2 is zero which matches C0;1 · C0;2 = (e2)S0 = 0,
C1;2 · C1;0 = (h · e)S1 = 0, and C2,0 · C2;1 = ((h−∑xi) · e)S2 = 0.

On the other hand, the geometry associated to (4.12) has S0 = F1
0, S1 = F2 and

S2 = F5
4. The gluing curves between S0 and S1 are C0;1 = e, C1;0 = e. The gluing curves

between S1 and S2 are C1;2 = h,C2;1 = e. The gluing curves between S2 and S0 are
C2;0 = h −

∑
xi, C0;2 = e − x. Here x denotes the exceptional curve of the blowup of

S0 and xi denote the exceptional curves of the blowups of S2. One can check that the
intersections of these curves indeed give rise to the various coefficients in (4.12).

5.1.2 Consistency of gluings: volume matching, the Calabi-Yau condition, and
irreducibility

Not every pair of curves can be identified with one another to form a consistent gluing. First
of all, the topology of the two curves must be identical. This implies that a geometrically
irreducible curve in one surface can only be identified with a geometrically irreducible curve
in another surface, and furthermore that the genera (as defined in appendix A.3) of the
two curves must be identical and non-negative. If C ⊂ S is an irreducible curve, then
a necessary condition that must be satisfied by C is that for any other irreducible curve
C ′ ⊂ S such that C %= C, the intersection product must be non-negative:

C · C ′ ≥ 0. (5.10)

In this paper, some of the algebraic examples are non-geometric (i.e. do not admit a conven-
tional geometric description satisfying these consistency conditions) because they involve
gluings which identify a geometrically reducible curve in one surface with a geometrically
irreducible curve in another surface. Despite this apparent pathology, these examples nev-
ertheless satisfy the remaining conditions described below.

In addition to the above topological constraints, the volumes of a pair of gluing curves
must be the same. The volume of a curve C is computed by intersecting the curve with
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the Kahler class J via
vol(C) = −J · C (5.11)

where
J =

∑

a,α

φa,αSa,α +
∑

f

mfNf (5.12)

where mf are mass parameters and Nf are non-compact surfaces corresponding to those
mass parameters. The contribution of mass parameters to the volume will not play a
prominent role in this paper, so we define a truncated Kahler class Jφ which only keep
track of the contribution of Coulomb branch parameters to the volume

Jφ =
∑

a,α

φa,αSa,α (5.13)

The volume of C equals the mass of the BPS state obtained by wrapping an M2 brane on
C because the intersection number

− Sa,α · C (5.14)

captures the charge under u(1)a,α of the BPS state arising from M2 brane wrapping C. If
C lies in Sa,α, then the intersection (5.14) is computed via

Sa,α · C = K ′
a,α · C (5.15)

If C lies in some other surface Sb,β , then (5.14) is computed via

Sa,α · C = Cb,β;a,α · C (5.16)

Now, for (5.4) to be consistent we must have

Jφ · Ci
a,α;b,β = Jφ · Ci

b,β;a,α (5.17)

which is an important consistency condition for constructing XS,{qα}. We have checked
that (5.17) is satisfied for all the geometries presented in this paper.

Finally, the gluing curves also have to satisfy the Calabi-Yau condition which states
that (

Ci
a,α;b,β

)2
+
(
Ci
b,β;a,α

)2
= 2g − 2 (5.18)

where g is the genus of Ci
a,α;b,β . See [2, 4] for more details.

Notice that in special situations the Calabi-Yau condition (5.18) is automatically sat-
isfied as long as we satisfy (5.17). This is the situation when there is a single gluing
curve Ca,α;b,β ∼ Cb,β;a,α between two surfaces Sa,α and Sb,β such that neither of them is a
self-glued surface. Then, (5.17) implies

K · Ca,α;b,β = C2
b,β;a,α (5.19)

Adding C2
a,α;b,β to both sides of the above equation we get

C2
a,α;b,β + C2

b,β;a,α = 2g − 2 (5.20)
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As an example, in what preceded above we discussed the geometry associated to (4.11).
We can check that (5.17) is satisfied for all the gluing curves in the geometry. For instance,

Jφ · C0;1 = φ0 (K0 · C0;1) + φ1C
2
0;1 + φ2 (C0;2 · C0;1) (5.21)

= φ0 (K · e)S0 + φ1
(
e2
)

S0
+ φ2

(
e2
)

S0
(5.22)

= −2φ0 (5.23)

and comparing it with

Jφ · C1;0 = φ0C
2
1;0 + φ1 (K1 · C1;0) + φ2 (C1;2 · C1;0) (5.24)

= φ0
(
e2
)

S1
+ φ1 (K · e)S1 + φ2 (e · h)S1 (5.25)

= −2φ0 (5.26)

we find that indeed the gluing C0;1 ∼ C1;0 is consistent. Similarly, it can be checked that
all the other gluings are consistent as well. In a similar fashion, one can also check that all
of the gluings in the geometry associated to (4.12) discussed above satisfy (5.17).

5.1.3 Weights, phase transitions and flops
A hypermultiplet transforming in a representation Rf of the 5d gauge algebra h = ⊕αhα

appears as a collection of curves inside XS,{qα}. These curves are characterized as follows.
Let mf be the mass parameter corresponding to Rf . For each weight w(Rf ) of Rf , define
a quantity vol (w(Rf )), which we call the virtual volume, by shifting the quantity

w(Rf ) · φ +mf (5.27)

by the shift (4.10) for all α. Then, one can find a holomorphic curve Cw(Rf ) in XS,{qα}
such that

vol
(
Cw(Rf )

)
= |vol (w(Rf )) | (5.28)

In general, the curve Cw(Rf ) can be a positive linear combination of curves living
inside various irreducible surfaces. However, some of the curves Cw(Rf ) turn out to be
living purely inside a single irreducible surface Sa,α. If such a curve Cw has genus zero
and self-intersection −1 inside Sa,α, then one can perform a flop transition13 on XS,{qα} by
flopping C, which corresponds to a phase transition in the Coulomb branch of the 5d gauge
theory described in previous section. We refer to such a flop transition as a “gauge-theoretic
flop transition” to distinguish it from the flop transitions associated to more general −1
curves not associated to any hypermultiplet.

Let the geometry obtained after the flop transition associated to Cw be X ′
S,{qα}. As

for XS,{qα}, there exist curves C ′
w(Rf ) in X ′

S,{qα} associated to weights w(Rf ) such that

vol
(
C ′
w(Rf )

)
= |vol′ (w(Rf )) | (5.29)

13This transition corresponds to blowing down C inside Sa,α and performing a blow-up in the neighboring
surfaces intersecting C transversally. We will explain such transitions via various illustrations throughout
this paper. More detailed background can be found in section 2 of [4].
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where vol′ (w(Rf )) is the shift of the quantity (5.27) computed in the new phase. The
relationship between the two virtual volumes vol′ (w(Rf )) and vol (w(Rf )) is

vol′ (w(Rf )) = vol (w(Rf )) (5.30)

for all w(Rf ) %= w, and
vol′ (w) = −vol (w) (5.31)

with a minus sign.
We know from the analysis presented in the last section that the canonical 5d gauge

theory associated to (4.6) is an su(3) gauge theory with six fundamental hypers. The
Dynkin coefficients of the weights of fundamental are (1, 0), (−1, 1) and (0,−1). We call
these weights w1, w2 and w3 respectively. We can compute

vol(w1) = −φ0 + φ1 (5.32)
vol(w2) = −φ1 + φ2 (5.33)
vol(w3) = φ0 − φ2 (5.34)

Recall that the phase (4.11) corresponds to vol(w1) and vol(w2) being positive and vol(w3)
being negative for all the six fundamentals. Now compute the volume of one of the blowups
xi living in the surface S2 in the geometry corresponding to (4.11):

vol(xi) = −φ0 + φ2 (5.35)

Thus we see that Cw3 for each fundamental is xi. The reader can check that Cw2 = f2+xi
and Cw1 = f1 + f2 + xi where fa denotes the fiber of the Hirzebruch surface Sa.

In fact, the geometries corresponding to (4.11) and (4.12) are related by a flop transi-
tion. We first blow down one of the blowups, say x6, inside S2. Under this blowdown the
identity of S2 changes from F6

4 to F5
4. Since x6 intersects the gluing curve h−∑6

i=1 xi at one
point, the gluing curve after the blowdown becomes h−

∑6
i=1 xi + x6 = h−

∑5
i=1 xi. The

other gluing curve inside S2 is unaffected since x6 does not intersect with it. Correspond-
ingly, since the gluing curve for S1 in S2 does not intersect x6, the surface S1 is unaffected
by the flop transition. However, since the gluing curve for S0 in S2 intersects x6, we have
to blowup S0 at a point lying on the gluing curve for S2 inside S0. Under the blowup the
identity of S0 changes from F0 to F1

0. The gluing curve for S2 inside S1 is changed to e−x.
Recall that the phase (4.12) corresponds to turning on a large mass m for one of the

fundamentals such that
vol(w3) = φ0 − φ2 +m (5.36)

for this fundamental is positive. Correspondingly, we can compute that

vol(x) = φ0 − φ2 (5.37)

which indeed matches (5.36) up to the contribution from mass parameter, thus verify-
ing (5.31). We are not keeping track of non-compact surfaces in this paper, so we are only
able to verify (5.31) up to the contribution from m.
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5.1.4 Affine Cartan matrices and intersections of fibers

For each surface Sa,α in XS,{qα}, we define a canonical fiber fa,α inside it:

• If gα is non-trivial, then Sa,α will always be a Hirzebruch surface14 whose fiber class is
the canonical fiber fa,α. An M2 brane wrapping this curve gives rise to the W-boson
Wa,α discussed in last section.

• If the node α is

2
su(1)(1)

(5.38)

then it turns out that there is a single corresponding surface S0,α = F 2
0 which is

self-glued since e− x and e− y are identified with each other where x and y are the
exceptional curves corresponding to the two blowups. Due to the self-gluing, the fiber
class of S0,α intersects itself inside the threefold XS,{qα} and appears as an elliptic
curve with a nodal singularity. It is this fiber class that we refer to as the canonical
fiber f0,α in this case.

• If the node α is

1
sp(0)(1)θ

(5.39)

then it turns out that there is a single corresponding surface S0,α = dP9. The del
Pezzo surface15 dP9 admits a unique elliptic fiber class 3l −∑xi which we refer to
as the canonical fiber f0,α in this case.

• If the node α is

2
su(1)(1)

(5.40)

then it turns out that there is no completely geometric description. We provide an
algebraic description in terms of algebraic properties of the curves inside the surface
S0,α = F 2

1 which is self-glued since x and y are identified with each other. The
canonical fiber in this case is f0,α = 2h + f − 2x− 2y which is a genus one curve of
self-intersection zero.

For each α we find that
fa,α · Sb,α = −Aab (5.41)

14In this paper, by a “Hirzebruch surface”, we refer to a Hirzebruch surface possibly with blowups at
generic or non-generic locations. Some background on Hirzebruch surfaces can be found in appendix A.

15In this paper, by a “del Pezzo surface dPn”, we refer to a surface which is an n point blowup of P2

but the blowups can be at non-generic locations. Some background on del Pezzo surfaces can be found in
appendix A.
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where Aab is the Cartan matrix of g(qα)
α and Aab ≡ A00 = 0 whenever gα is trivial. This

means that the fibers of Hirzebruch surfaces Sa,α for a fixed α intersect in the fashion of
Dynkin diagram associated to affine Lie algebra g(qα)

α .
Intersection (5.41) is of the form C ·Sa,α where C is some curve in the threefold XS,{qα}

and Sa,α is a surface inside the threefold. Like the triple intersection numbers of surfaces
inside a threefold, such intersections can also be computed in terms of intersection numbers
inside a surface. If C is a curve inside Sa,α, then

C · Sa,α = C ·K ′
a,α (5.42)

and if C is a curve inside a surface Sb,β that is distinct from Sa,α, then

C · Sa,α = C · Cb,β;a,α (5.43)

Consider the example of (4.11) whose associated geometry was described towards the
end of section 5.1.1. We can compute that

f0 · S0 = (K · f)S0 = −2 (5.44)
f1 · S1 = (K · f)S1 = −2 (5.45)
f2 · S2 = (K · f)S2 = −2 (5.46)
f0 · S1 = C0;1 · f0 = (e · f)S0 = 1 (5.47)
f1 · S2 = C1;2 · f1 = (h · f)S0 = 1 (5.48)
f2 · S0 = C2;0 · f2 =

((
h−

∑
xi
)
· f
)

S0
= 1 (5.49)

f1 · S0 = C1;0 · f1 = (e · f)S1 = 1 (5.50)
f2 · S1 = C2;1 · f2 = (e · f)S2 = 1 (5.51)
f0 · S2 = C0;2 · f0 = (e · f)S0 = 1 (5.52)

Thus we see that fa · Sb indeed reproduces the negative of Cartan matrix of affine Lie
algebra su(3)(1). We can similarly check that the geometry associated to (4.12) also leads
to the Cartan matrix of su(3)(1).

5.1.5 The genus one fibration
For each α, combining the fibers fa,α, let us define a fiber fα via

fα = dafa,α (5.53)

where da are Coxeter labels for g(qα)
α listed (in red color) in figures 1 and 2. If gα is trivial,

then d0 := 1.
We claim that fα is a genus one fiber. This means that fα can be obtained by a

degeneration of a torus. It is well-known that torus fibers can degenerate into Kodaira
fibers, which are collections of rational curves16 intersecting in the pattern of untwisted
affine Dynkin diagrams of type su(n)(1), so(2n)(1) and e(1)n . The multiplicity of each rational

16This means they have genus zero.
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component curve is given by the Coxeter label for the corresponding node in the affine
Dynkin diagram. The fiber fα, on the other hand, is composed of rational curves fa,α
with their multiplicity given by the Coxeter labels for affine Dynkin diagram g(qα)

α . Now,
one can notice that every affine Dynkin diagram can be obtained by folding affine Dynkin
diagrams of type su(n)(1), so(2n)(1) and e(1)n as follows:

so(2n)(1) → so(2n− 1)(1) → so(2n− 2)(2) (5.54)

e(1)6 → f(1)4 → so(8)(3) (5.55)

so(8)(1) → so(7)(1) → g(1)2 (5.56)
so(4n)(1) → su(2n)(2) → su(2n− 1)(2) (5.57)
so(8)(1) → so(7)(1) → su(4)(2) → su(3)(2) (5.58)

e(1)7 → e(2)6 (5.59)

Moreover, observe that the Coxeter numbers of two nodes are added if they are identified
under gluing. This means that fα can be obtained by identifying the rational components
of the Kodaira fibers according to the above folding rules. This explicitly shows that fα is
a genus one fiber.

Moreover, we find that due to the virtue of gluing rules, fα is glued to fβ as

qα(−Ωβα)fα ∼ qβ(−Ωαβ)fβ (5.60)

This generalizes the condition in the untwisted unfrozen case [4] where fi ∼ fj whenever
there is an edge between i and j in ΣT. This shows that certain multiples of genus one fibers
are identified with each other as one passes over from one collection of surfaces to another,
allowing us to extend the fibration structure consistently throughout the threefold.

More formally, according to a theorem due to Oguiso and Wilson [52, 53], a threefold
X admits an genus one fibration structure if and only if there exists an effective divisor
ST 2 satisfying

ST 2 · ST 2 · ST 2 = 0, ST 2 · ST 2 %= 0 (5.61)
where ST 2 lives in the extended Kähler cone, possibly on the boundary. The extended
Kähler cone is parameterized by all the Coulomb branch and mass parameters satisfying

J · C ≥ 0 (5.62)

for all holomorphic curves C in X. Physically, the extended Kähler cone corresponds to
the Coulomb branch of the (possibly mass deformed) 5d theory corresponding to X.

In all of geometries associated to 5d KK theories, we can find an ST 2 which lies in the
extended Kähler cone satisfies (5.61). Pick any node α and define

ST 2 :=
rα∑

a=0
d∨
aSa,α (5.63)

where d∨
a are dual Coxeter labels for the associated affine algebra g(qα)

α (see figures 1 and 2)
and rα is the rank of invariant subalgebra hα. If the node α carries a trivial gauge algebra,
then we define d∨

0 = 1 and take (5.63) to be the definition of ST 2 .
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In the gauge theoretic case, the direction parametrized by (5.63) is special since all the
fibers fa,α have zero volume along this direction17

− ST 2 · fa,α =
∑

b

Aabd
∨
b = 0 (5.64)

Similarly, in the non-gauge theoretic case

− ST 2 · f0,α = −K ′
0,α · f0,α = 0 (5.65)

where the last equality can be checked to be true for every non-gauge theoretic case.
Moreover, the reader can check using the explicit description of geometries presented in
this paper that

ST 2 · C ≥ 0 (5.66)
for all other holomorphic C in the threefold XS,{qα}. So, ST 2 as defiend in (5.63) lies in
the extended Kähler cone of XS,{qα}.

Now it can be easily checked for all the geometries presented in this paper that

ST 2 · ST 2 = −qαΩαα
rα∑

a=0
(dafa,α) %= 0 (5.67)

where da are the Coxeter labels for g(qα)
α with d0 := 1 if α is a non-gauge theoretic node.

We can now compute

ST 2 · ST 2 · ST 2 ∝
rα∑

a=0
(dafa,α) ·

(
rα∑

b=0
d∨
b Sb,α

)

= −
rα∑

a,b=0
daAabd

∨
b = 0 (5.68)

thus verifying both the conditions in (5.61) and establishing the presence of a genus one
fibration in XS,{qα}.

Let us now discuss the relationship between fibers fα and the radius of compactification
circle R. In general, we can find at least one node µ such that

nµfµ ∼ nµ,αfα (5.69)

with nµ,α ≥ nµ ≥ 1 for all α . Then the curve

f := lµnµfµ (5.70)

with lµ defined in section 3.3 can be identified with the KK mode of unit momentum in
TKK
S,{qα} and has mass 1

R where R is the radius of the circle on which the 6d theory T has
been compactified. Thus, all the fα can be identified as fractional KK modes with mass
1

nαR
where nα = lµnµ,α. This generalizes the condition in the untwisted unfrozen case

where the KK mode is identified with

f := fi (5.71)

for any i, which is consistent since fi ∼ fj for all i, j.
17In fact, non-negativity of the volumes of fibers implies that the only directions in the Coulomb branch

when mass parameters are turned off are given by
∑

a
d∨
aSa,α for various α.
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Let us now discuss some examples. For the KK theory

1
sp(n)(1)

4
so(2m)(2)

(5.72)

we find that
fsp(n)(1) ∼ 2fso(2m)(2) (5.73)

and the KK mode is
f = fsp(n)(1) (5.74)

For the KK theory (3.30), we find that

fsp(n)(1) ∼ 2fso(2m)(1) (5.75)

and the KK mode is
f = fsp(n)(1) (5.76)

For the KK theory (3.28), our gluing rules say that

2fsu(n)(2) ∼ 2fsu(m)(1) (5.77)

and the KK mode is
f = 2fsu(n)(2) (5.78)

For the KK theory (3.14), our gluing rules say that

fsu(n)(1) ∼ fsu(m)(1) (5.79)

and the KK mode is
f = 2fsu(n)(1) (5.80)

An interesting example to consider is the KK theory defined by the untwisted com-
pactification of the 6d SCFT

2
su(p)

4
so(m)

1
sp(n)

2 (5.81)

which arises only in the frozen phase. We find that

2fsu(p)(1) ∼ 2fso(m)(1) (5.82)
fso(m)(1) ∼ fsp(n)(1) (5.83)

and the KK mode is
f = 2fsu(p)(1) ∼ 2fso(m)(1) ∼ 2fsp(n)(1) (5.84)

If (5.81) arose in the unfrozen phase of F-theory, then we would have obtained

f = fsu(p)(1) ∼ fso(m)(1) ∼ fsp(n)(1) (5.85)

Thus equation (5.84) is a way to see that (5.81) cannot arise in the unfrozen phase of
F-theory.
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5.2 Geometry for each node

In this section we will describe the surfaces Sa,α along with their intersections associated
to a single node α.

5.2.1 Graphical notation
We will capture the data of the surfaces and their intersections by using a graphical notation
that would be a simpler version of the graphical notation used in [3, 4]. This subsection is
devoted to the explanation of this notation. We find it best to explain the notation with
the following example:

02+2
8 12+2

6 20e-
∑

yi h+
∑

(f -yi) e-
∑

xi-
∑

yi 3e+ 2f
f -xi,f -xi,

3
xi yi xi yi

2 2 (5.86)

which is a particular phase of the KK theory

2
so(8)(3)

(5.87)

Since the rank of invariant subalgebra h = g2 is two, we should have three surfaces in this
case labeled by Sa where 0 ≤ a ≤ 2. The middle number in the label for each node denotes
the index a. Thus the node labeled 02+2

8 denotes the surface S0, the node labeled 12+2
6

denotes the surface S1, and the node labeled 20 denotes the surface S2.
Every surface Sa is a Hirzebruch surface. The subscript in the label for each node

denotes the degree of the corresponding Hirzebruch surface. Thus, S0 has degree 8, S1
has degree 6, and S2 has degree 0. The superscript in the label for each node denotes the
number of blowups on the corresponding Hirzebruch surface. Thus, S0 carries 2 + 2 = 4
blowups and hence S0 = F4

8, S1 carries 2 + 2 = 4 blowups and hence S1 = F4
6, and S2

carries no blowups and hence S2 = F0.
The fact that the four blowups on S0 are displayed as 2 + 2 denotes that the four

blowups are divided into two sets, with each set containing two blowups. We denote the
blowups in the first set as xi and the blowups in the second set as yi. The same is true for
S1. In a general graph, the blowups on a surface can be divided into more than two sets,
and the number of blowups inside each set can be different. Whatever may be the case,
we adopt the notation of denoting the blowups inside the first set as xi, the blowups inside
the second set as yi, the blowups inside the third set as zi etc.

The label in the middle of an edge between two nodes denotes the number of irreducible
components of the intersection locus between the two surfaces corresponding to the two
nodes. As already discussed above, each component of the intersection locus can be viewed
as an irreducible gluing curve inside each of the surfaces participating in the intersection.
Thus, there is a single gluing curve between S1 and S2 in the graph (5.86), but there are
three gluing curves between S0 and S1. The graph also tells us that the surface S0 is a
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self-glued Hirzebruch surface since there are edges which start and end at S0. Similarly, S1
is also a self-glued surface. We can see that the number of self-gluings in S0 are two, and
the number of self-gluings in S1 are also two.

The curves displayed at the ends of edges tell us the identities of various gluing curves.
The left end of the edge between 12+2

6 and 20 reads e−∑xi−
∑

yi, which means that the
corresponding gluing curve inside S1 is e−∑xi−

∑
yi. The right end of the edge between

12+2
6 and 20 reads 3e+ 2f , which means that the corresponding gluing curve inside S2 is

3e+ 2f . We note that whenever we write ∑xi or
∑

yi, we mean a sum of all the blowups
in the set of blowups denoted by xi or yi respectively.

In the above graph, the two self-gluings of S0 are displayed by writing xi at one end
and yi at the other end. This tells us that xi in S0 is glued to yi in S0. Since there is
no sum over i, this gluing is supposed to be true for each valued of i. Hence, the two
self-gluings are x1 ∼ y1 and x2 ∼ y2. The same is true for self-gluings of S1.

The gluing curves for the three gluings between S0 and S1 are displayed as f − xi, e−∑
yi inside S0 and as f −xi, h+

∑(f − yi) inside S1. These are supposed to be read in the
order they are written. Thus, unpacking the notation we learn that the three gluings are

(f − x1)S0 ∼ (f − x1)S1 (5.88)
(f − x2)S0 ∼ (f − x2)S1 (5.89)

(e− y1 − y2)S0 ∼ (h+ 2f − y1 − y2)S1 (5.90)

We also sometimes suppress multiplicity of a gluing curve. For example, in the geom-
etry

32+2
6

23 16+6
5

f
e-
∑

xi-
∑

yi

2h

eh

f -xi-yi

01 h e

6

2
xi yi

(5.91)

the gluing curve for S2 in S3 is displayed simply as f . But the edge between S2 and S3
shows that there are six gluing curves involved. This means that the true gluing curve for
S2 in S3 is actually six copies of the fiber f of S3.

Now, let us extract the prepotential 6F̃ from the graph (5.86). The coefficient of φ3
0 is

(K ′2)S0 =
((

K+
∑

xi+
∑

yi
)2)

S0
=
(
K2+

∑
x2i +

∑
y2i +2

∑
K ·xi+2

∑
K ·yi

)

S0

(5.92)
We have K2 = 8− 4 = 4 and K · xi = K · yi = −1, using which (5.92) reduces to

(K ′2)S0 = 4− 2− 2− 4− 4 = −8 (5.93)
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Similarly the coefficient of φ3
1 is −8. The coefficient of φ3

2 is 8. The coefficient of φ2φ2
1 can

be computed as (
(3e+ 2f)2

)

S2
= 12 (5.94)

which coincides with
(
K ′ ·

(
e−

∑
xi −

∑
yi
))

S1
=
((

K +
∑

xi +
∑

yi
)
·
(
e−

∑
xi −

∑
yi
))

S1
= 12
(5.95)

as it should for consistency. We can compute the coefficient of φ0φ2
1 to be

(((
e−

∑
yi
)
+ (f − x1) + (f − x2)

)2)

S0
= −8 (5.96)

which indeed coincides with
(
K ′ · ((h+ 2f − y1 − y2) + (f − x1) + (f − x2))

)
S1

= −8 (5.97)

Similarly, we can compute coefficients for other terms of the form φaφ2
b . Finally, the

coefficient of φ0φ1φ2 must be 0 since there is no edge between S0 and S2. But this coefficient
can also be computed as an intersection number of gluing curves inside S1. Thus, the
corresponding intersection number better be zero for consistency. Indeed we find that

((
e−

∑
xi −

∑
yi
)
· ((h+ 2f − y1 − y2) + (f − x1) + (f − x2))

)

S1
= 0 (5.98)

5.2.2 Untwisted
In this subsection, we collect our results for nodes of the form

k
g(1)

(5.99)

That is, we restrict ourselves to the case where the associated affine Lie algebra is untwisted.
All such nodes are displayed in table 1 and table 2. Most such cases were first studied
in [3, 4]. We will be able to recover their results. We will associate a collection of geometries
parametrized by ν to each node of the form (5.99). Geometries for different values of ν

are flop equivalent as long as there are no neighboring nodes, but might cease to be flop
equivalent in the presence of neighboring nodes. The geometries associated to (5.99) in [4]
are obtained as ν = 0, 1 versions of the geometries associated in this paper.

The geometries associated to nodes of the form (5.99) are presented below. We will
display the corresponding node inside a circle placed at top of the geometry:

02n+8−ν
1 12n+2−ν · · · (n− 2)8−ν nν

0(n− 1)6−ν
eh 2e+f -

∑
xiehh2h-

∑
xi e

1
sp(n)(1)(n+1)π

(5.100)
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where 0 ≤ ν ≤ 2n + 8, n ≥ 1 and the theta angle should be viewed modulo 2π. We can
see that fa · Sb reproduces the negative of Cartan matrix for untwisted affine Lie algebra
sp(n)(1), where fa is the canonical fiber of Hirzebruch surface Sa. The same hold true for
all the examples discussed below in this subsection. One can check in each example below
that fa · Sb reproduces the negative of Cartan matrix for the associated untwisted affine
Lie algebra g(1).

02n+8−ν
1 12n+2−ν · · · (n− 2)8−ν nν

1(n− 1)6−ν
eh 2h-

∑
xiehh2h-

∑
xi e

1
sp(n)(1)nπ

(5.101)
where 0 ≤ ν ≤ 2n + 8, n ≥ 1 and the theta angle should be viewed modulo 2π. See
appendix (B.3) for more discussion on the relationship between theta angle and geometry.

Notice that the two geometries (5.100) and (5.101) are isomorphic by virtue of the
isomorphism between F1

0 and F1
1 discussed in appendix A.1. Suppose first that ν > 0. Then,

the isomorphism applied to Sn sends 2h− x1 in Fν
1 to 2e+ f − x1 in Fν

0 , thus mapping the
gluing curve for Sn−1 in Sn in (5.101) to the gluing curve for Sn−1 in Sn in (5.100). Thus the
whole geometry (5.101) is mapped to the geometry (5.100) by this isomorphism. For ν = 0,
the two geometries (5.101) and (5.100) are flop equivalent due to this isomorphism. This
is because they are flop equivalent to ν > 0 versions of the geometries (5.101) and (5.100),
and we have already established an isomorphism between the latter geometries.

However, it is possible for this isomorphism to not extend to the full Calabi-Yau
threefold when sp(n) has other neighbors. The gluing curves inside S0 and Sn for the
surfaces corresponding to these neighbors might not map to each other under the above
isomorphism plus flops. Whenever the isomorphism extends to the full threefold, the sp(n)
theta angle is physically irrelevant. Whenever the isomorphism does not extend to the
full threefold, the sp(n) theta angle is physically relevant. We will see examples of both
situations later when we discuss gluing rules for sp(n).

For n = 0, we claim that the associated geometry is

081

1
sp(0)(1)θ

(5.102)

One way to see this is to notice that both the geometries (5.100) and (5.101) reduce
to (5.102) in the limit n = 0. For a more precise way to see that (5.102) is the correct
geometry, see the discussion around (B.9).
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When sp(0)(1)θ has no other neighbors, then all the blowups are generic and we can
write S0 = dP9. When sp(0)(1)θ has neighbors, it turns out that S0 = dP9 with 9 non-generic
blowups is the correct answer, instead of S0 = F8

1 with eight non-generic blowups. This is
because when the 9 blowups are non-generic, it is not always possible to represent dP9 as
F8
1 with 8 non-generic blowups. So, S0 = F8

1 is not quite the correct answer. See [4] for
more discussion on this point. Thus, in this paper, from this point on, we will represent
the geometry associated to sp(0)(1)θ by dP9.

02n+8
1

(2n− 1)2n+5 (2n− 2)12n+4

11+1
3 214

· · ·

· · ·

(n+ 1)1n+7

(n− 1)1n+1

nn+3

h-
∑

xi

h

h

e h-x e h-x

e

h+f

e

h

eh-xh-x
e

e

x

x

f -x

f -x x

xf

f -x-y

f -x

f -x

1
su(2n)(1)

(5.103)
For this geometry, we do not define multiple versions distinguished by the parameter ν.
Nevertheless, for uniformity of notation, we denote this geometry with ν = 0. Similarly,
we will denote all the following geometries having a single unique version with ν = 0.

For n = 2, we have

0121

39

11+1
3

25
h-
∑

xi

h

h

h+f

e

e

f

f -x-y

1
su(4)(1)

e

h

(5.104)
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02n+9
1

(2n)2n+6 (2n− 1)12n+5

11+1
3 214

· · ·

· · ·

(n+ 2)1n+8

(n− 1)1n+1

(n+ 1)1n+5

h-
∑

xi

h

h

e h-x e h-x e

h+f

e-x

h-xeh-xh-x
e

e

x

x
f -x

f -x x

xf

f -x-y

f -x

f -x

1
su(2n+ 1)(1)

nn+2

h+f -x

x

x

e

(5.105)

For n = 1, we have

0121

27

13

h-
∑

xi

h

h+f

e

e

h+f

1
su(3)(1)

(5.106)

0(2n−8)+2
3

(2n− 1)12n−7 (2n− 2)12n−8

111 210

· · ·

· · ·

(n+ 1)1n−5

(n− 1)1n−3

n1+1
n−5

h-x-2y-
∑

xi,

e

h-x,x

e h-x e h-x
e

e+(n-6)f

e+f -x-2y,

h-x,x
eh-xe-x

h
e

x

x f -x

f -x
x

x
f -x

f -x

f -x

f -x
2

f -x

x

y

1
su(2̂n)(1)

x

y

f -x
2

(5.107)
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0(2n−7)+2
3

(2n)12n−6 (2n− 1)12n−7

111 210

· · ·

· · ·

(n+ 2)1n−4

(n− 1)1n−3

h-x-2y-
∑

xi,

e

h-x,x

e h-x e h-x

eh-xe-x
h

e

x

x f -x

f -x
x

x
f -x

f -x

f -x

f -x

(n+ 1)1+1+1
n−4

n1
n−2e

f -z
e+f -x-2y-z,

h,f

1
su(2̂n+ 1)(1)

2

x

h-x

e+(n-5)fe

z-x

x y

x

y

2
f -x

(5.108)
The above two examples are not completely geometric. See the discussion after equa-

tion (5.160).

0151

512 4110

11+1
3 24

38
h-
∑

xi

h

h

e h
e

e

e

h

h-x
e h+f

y

f -x

f

f

f -x-y
x-y

1
su(6̃)(1)

(5.109)

0(4n−ν)+ν
0

12−ν 24−ν

(2n− 1)4n−2−ν (2n− 2)4n−4−ν

· · ·

· · ·

(n− 1)2n−2−ν

(n+ 1)2n+2−ν

n2n−ν

e-
∑

yi

e-
∑

xi

e

h e h e

h

e

h

e

hee

h

h

2
su(2n)(1)

(5.110)

where 0 ≤ ν ≤ 4n and n ≥ 2.
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For n = 1, we have

04−ν
0 1ν

2
e, e-
∑

xi e, h-
∑

xi2

2
su(2)(1)

(5.111)

where 0 ≤ ν ≤ 4.

0(4n+2−ν)+ν
0

12−ν 24−ν

(2n)4n−ν (2n− 1)4n−2−ν

· · ·

· · ·

n2n−ν

(n+ 1)2n+2−ν

e-
∑

yi

e-
∑

xi

e

h e h e

h

e

hee

h

h

2
su(2n+ 1)(1)

(5.112)

where 0 ≤ ν ≤ 4n+ 2 and n ≥ 1.

For n = 0, we claim that the geometry is

01+1
0

e-x

e-y

2
su(1)(1)

(5.113)

which can be recognized as a limit of ν = 1 phase of (5.112). See appendix B.1 for a
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derivation that this is the correct answer.

01

21

11

e

e

e

e

e

e

3
su(3)(1)

(5.114)

0ν+ν
ν+2

1ν+2 n(2n−8−ν)+(2n−8−ν)
2n−6−ν

2ν 32−ν · · ·

(n− 1)2n−6−ν

(n− 2)2n−8−ν

h

h

e

h

e

fe

f -xi-yi

h
ehe

e

e
2n-8-νν

4
so(2n)(1)

f -xi-yi

f

(5.115)

where 0 ≤ ν ≤ 2n− 8.

0ν+ν
ν+2

1ν+2

2ν 32−ν · · · (n)(2n−7−ν)+(2n−7−ν)
6(n− 1)2n−6−ν

h

e

h

e-
∑

xi-
∑

yi2hehe

e

e

2n-7-ν

xi yi

ν

f -xi-yi

f

4
so(2n+ 1)(1)

(5.116)
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where 0 ≤ ν ≤ 2n− 7.

36

21−ν 1(2−ν)+(2−ν)
3−ν

f

e

2h+ νf

eh

f -xi-yi

0ν+ν
1+ν e e

2 − ν
ν

f -xi-yi

f

3
so(7)(1)

(5.117)

where 0 ≤ ν ≤ 1.

31+1
6

22−ν 1(4−ν)+(4−ν)
4−ν

f

e-x-y

2h+ νf

eh

f -xi-yi

0ν+ν
ν e e

4 − νν

f -xi-yi

f

2
so(7)(1)

x y

(5.118)
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where 0 ≤ ν ≤ 2.

32+2
6

23 16+6
5

f
e-
∑

xi-
∑

yi

2h

eh

f -xi-yi

01 h e

6

1
so(7)(1)

2
xi yi

(5.119)

24−k

44(4−k)
6−k

34−k
2

f

h

h
e-
∑

xi

h

f -xi-yi

14−k
2

xi

e

4 − k

4 − k

e-
∑

xi xi

f

f -zi-wi

02−k 4 − k
h e

k

so(8)(1)

(5.120)

where 1 ≤ k ≤ 3 and we have divided the 16− 4k blowups into four sets of 4− k blowups
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each. We label blowups in the four sets by xi, yi, zi and wi respectively.

21−ν 31+1
3−ν 4(2−ν)+(2−ν)

4e

h+ νf

e

13+ν

h e0ν+ν
1+ν 2h-x-y

f -x-y

e

e-
∑

xi-
∑

yi

f

2 − ν

xi yi

ν

f -xi-yi

f

3
so(9)(1)

(5.121)

where 0 ≤ ν ≤ 1.

24−k 3(4−k)+(4−k)
6−k 4(5−k)+(5−k)

2−2kh

h

e

16−k

h e
02−k

2h-
∑

xi-
∑

yi

f -xi-yi

e

h-
∑

xi-
∑

yi

f

5 − k

xi yi

k

so(9)(1)

4 − k

(5.122)
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where 1 ≤ k ≤ 2.

21−ν 313−ν 44−νe

h+ νf

e

113+ν

h e0ν+ν
1+ν h-x

f -x

e

e

f -x
5(3−ν)+(3−ν)+1
4−ν

3 − ν

f

f -xi-yi

x z

e-z

h

ν

f -xi-yi

f

3
so(10)(1)

(5.123)
where 0 ≤ ν ≤ 1.

24−k 34−k
6−k 44h

h

e

14−k
6−k

h e
02−k

h-
∑

xi

f -xi

e

e

f -xi

5(6−k)+(6−k)+(4−k)
4

6 − k

f

f -xi-yi

xi zi

e-
∑

zi

h

k

so(10)(1)

4 − k

4 − k

(5.124)
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for 1 ≤ k ≤ 2.

21−ν 33−ν 415−ν

e

h+ νf

h 5(4−ν)+(4−ν)
5e h

123+ν

e

x2-x1

2h-x

0ν+ν
1+ν

f -x1-x2

x1

f
f

f -x

e

e
e-
∑

xi-
∑

yi

4 − ν

xi yi

ν

f -xi-yi

f

3
so(11)(1)

(5.125)
where 0 ≤ ν ≤ 2.

22 34 426

e

h

h
55+5
4e h

144

e

x2-x1,

2h-
∑

xi

00

f -x1-x3,

x1, x3

f

f

f -xi

e

e
e-
∑

xi-
∑

yi

5
xi yi

2
so(11)(1)

f -x2-x4 2
2

x4-x3
2

(5.126)
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23 35 437

e

h

h
56+6
3e h

165

e

x2-x1,

2h-
∑

xi

01

f -x1-x3,

x1,x3,x5

f

f

f -xi

h

e
e-
∑

xi-
∑

yi

6
xi yi

1
so(11)(1)

f -x2-x4, f -x5-x6 3
3

x4-x3,

3
x6-x5

(5.127)

21−ν 33−ν 415−ν

e

h+ νf

h

57−ν

e h

123+ν

e

e

x2-x1

h

0ν+ν
1+ν

f -x1-x2

x1

f

f

f -x

f -xi-yie

e

6(5−ν)+(5−ν)
6−ν

5 − ν

f

h-x

e

ν

f -xi-yi

f

3
so(12)(1)

(5.128)
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where 0 ≤ ν ≤ 2.

22 34 426

e

h

h

58

e h

144

e

x2-x1,

h-
∑

xi

00

f -x1-x3,

x1, x3 f

f

f -xi

e

e

e

2
so(12)(1)

f -x2-x4 2
2

x4-x3

2

66+6
6

6

f -xi-yih

e

f

(5.129)

23 35 437

e

h

h

59

e h

165

e

x2-x1,

h-
∑

xi

01

f -x1-x3,

x1,x3,x5 f

f

f -xi

e

e

e

1
so(12)(1)

f -x2-x4,f -x5-x6 3
3

x4-x3, 3

67+7
6

6

f -xi-yih

e

f
x6-x5

(5.130)
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22 34 41+1
6

e

h
h

57

e h

12+2
4

e

e
x2
-x1

h-y

00

f -x1-x2 ,f -y1-y2

x1,y1
f

f

f -x,f -y

f -xi-yi

f

e

e

66+6
7

6

y 2
-y 1

f

h-x

e

2
so(1̂2)(1)

2

2

(5.131)

23 35 42+1
7

e

h

h

58

e h

12+2
5

e

e

x2-x1,x4 − x3

h-y

01

f -x1-x3,f -x2-x4,f -y1-y2

x1,x3,y1
f

f

f -x1 ,f -x2 ,f -y

f -xi-yi

f

e

e

67+7
7

7

y 2
-y 1

f

h-x1 -x2

e

1
so(1̂2)(1)

3

3

2

(5.132)

– 61 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

00

22 312 44 518 6119,7

112

x

e

e
x

x

h-x

e-x

x

f -xx

h-x e-x h e h+f e 2h-x e

f -x
x

f -x

f -x f -x
x

2
so(13)(1)

(5.133)

0ν+ν
ν 22−ν 1(4−ν)+(4−ν)

4+ν

e e 3h+νf e-
∑

xi-
∑

yi

4 − ν

xi yi

ν

f -xi-yi f

2
g(1)2

(5.134)

where 0 ≤ ν ≤ 2.

0k−2 24−k 1(10−3k)+(10−3k)
3k−2

e e 3h e-
∑

xi-
∑

yi 10 − 3k

xi

yi

k

g(1)2

(5.135)
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where k = 1, 3.

44−k 36−k 2(5−k)+(5−k)
6

e e h 1(5−k)+(5−k)
8

e 2h0k−2
e -
∑

xi-
∑

yi

e-
∑

yi,

5 − k

xi yi

h+
∑

(f -yi),
f -xi f -xi6 − k

5 − k

xi yi

k

f(1)4

(5.136)
for 1 ≤ k ≤ 5.

0k−2 6k−4 36−k

54

e eh e

xi-yi

h

6 − k

h

46−k
8−k

26−k
8−k 1(6−k)+(6−k)

10−k

6 − k

6 − k

e

h

e

xi

f -xi

f

e

h-
∑

xi

e

f -xi

f -xi

k

e(1)6

(5.137)
for 1 ≤ k ≤ 6.

62m−4 52m−6 44−m
4−m 14−m

18−3me h e 34−m
6−m 24−m

8−mh e he02m−2 e-
∑

xi

h

eh

74−m
6−m

h+(4-m)f e

e

f -xi

4 − m 4 − m
4 − m

f -xi

f -xi

xi

f -xi

f -xi

f -xi xif -xi
f -xi

2m
e(1)7

4 − m

4 − m

(5.138)
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for 1 ≤ m ≤ 4.

62m−5 52m−7 44−m
5−m 14−m

20−3me h e 3(4−m)+2
6−m 24−m

8−mh e-y1 he02m−3 e-
∑

xi

h

eh

74−m
7−m

h+(5-m)f e

e

f -xi

5 − m 4 − m
4 − m

f -xi

f -xi

xi

f ,f -xi

y1-y2,f -xi

f -xi xi

f ,f -xi

f -y1-y2,f -xi

2m− 1
e(1)7

5 − m

4 − m

(5.139)
for 1 ≤ m ≤ 4.

18 26 34 62e h e 42 50h e

e

e

e010 h eh

82

e e h ee

12
e(1)8

74

5.2.3 Twisted

In this subsection, we will generalize our results to nodes of the form

k
g(q)

(5.140)

for q > 1 and

2
su(n)(1)

(5.141)
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All such nodes are listed in table 8.

m1 (m− 1)6 · · · 22m

02m+2m
2m+2

f

f -xi-yi

2h e h

h

e

e

2m

12m+2

h

e

2
su(2m)(2)

(5.142)

where m ≥ 3. Notice that the Cartan matrix associated to this geometry is precisely that of
su(2m)(2). Similar comments hold for all the geometries discussed below in this subsection.
For each example below, one can check that fa · Sb reproduces negative of Cartan matrix
of the associated twisted affine algebra g(q).

m1 (m− 1)6 · · · 12m+2 0(2m+1)+(2m+1)
6

yi

xi

2h e h 2h e-
∑

xi-
∑

yie 2m+1

2
su(2m+ 1)(2)

(5.143)
where m ≥ 2.

0(9−3k)+(9−3k)
4k−2 10e-

∑
xi-
∑

yi 4e+(4-k)f

xi

yi

k
su(3)(2)

9 − 3k

(5.144)
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where 1 ≤ k ≤ 3.

04+4
6 21 16e 2h 2h e

4

2
su(4)(2)

f -xi-yi
f

(5.145)

06+6+1+1
6 21 16e-z-w 2h+f 2h e

6

1
su(4)(2)

f -xi-yi

f

z

w

(5.146)

0ν+ν
6+2ν 11+ν 21−ν · · · (n− 2)2n−7−ν (n− 1)(2n−8−ν)+(2n−8−ν)

6
e 2h e e h 2he-

∑
xi-
∑

yie

f -xi-yif

4
so(2n)(2)

2n − 8 − ν

xi yiν

(5.147)

where 0 ≤ ν ≤ 2n− 8.

010 18 20e h e 3e+f

4
so(8)(3)

(5.148)
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01+1
9 11+1

7 21
e-y h+f -y e-x-y 3h

3
so(8)(3)

f -x,f -x,

2
x y x y

(5.149)

02+2
8 12+2

6 20e-
∑

yi h+
∑

(f -yi) e-
∑

xi-
∑

yi 3e+ 2f

2
so(8)(3)

f -xi,f -xi,

3
xi yi xi yi

2 2 (5.150)

03+3
7 13+3

5 21e-
∑

yi h+
∑

(f -yi) e-
∑

xi-
∑

yi 3h+ f

1
so(8)(3)

f -xi,f -xi,

4
xi yi xi yi

3 3 (5.151)

02k−2 1(4−k)+(4−k)
1 21 3(4−k)+(4−k)

6
e 2h-

∑
xi-
∑

yi e e
f -x

i-y
i

f

e-
∑

xi-
∑

yi2h+(4 − k)f

4 − k

k
so(8)(2)

4 − k

xi yi

(5.152)
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where 1 ≤ k ≤ 4.

02 141 21 35 44+4
14

e 2h-
∑

xi

x 2
-x 3

, x
1-
x 4

f ,f

e e h+f e 2h e-
∑

xi-
∑

yi

f -x1-x2
f

2
so(10)(2)

2

4

xi yi

(5.153)

02 141 21 35 41 56+6
18

e 2h-
∑

xi

x 2
-x 3

x 1
-x

2,
x 3

-x
4

f ,f

e e h+f e h e 2h e

ff -x1-x2
f

2
so(1̂2)(2)

2

6

xi yi

(5.154)
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42−m34−m

2(3−m)+(3−m)
6 1(3−m)+(3−m)

8 0(3−m)+(3−m)
k+4

he

2h

e-
∑

xi-
∑

yi
h+
∑

(f -yi) h-
∑

xie-
∑

yi e-
∑

xi

2m
e(2)6

3 − m 3 − m 3 − m

f -xi,

4 − m

f -xi, f -yi, f -yi,

4 − m

xi yi xi yi xi yi

(5.155)

for 1 ≤ m ≤ 3.

02n1

(2n− 1)12n−3 (2n− 2)12n−4

113 214

· · ·

· · ·

(n+ 1)1n−1

(n− 1)1n+1

n1+1
n−1

h-
∑

xi

h

h

e h-x e h-x
e

e+(n-2)f

e+f -x-2y,

h-x,x
eh-xh-x

e
e

x

x f -x

f -x
x

x
f -x

f -x

f -x

f -x 2
f -x

x

y

2
su(2n)(1)

(5.156)
for n ≥ 2.

For n = 1, we have

021 11+1
0

h, h-
∑

xi e+f -x-2y, e-x
2

x

y

2
su(2)(1)

(5.157)
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Now we discuss some examples which are not completely geometric:

02n+1
1

(2n)12n−2 (2n− 1)12n−3

113 214

· · ·

· · ·

(n+ 2)1n

(n− 1)1n+1

h-
∑

xi

h

h

e h-x e h-x

eh-xh-x
e

e

x

x f -x

f -x
x

x
f -x

f -x

f -x

f -x

(n+ 1)1+1+1
n

n1
n+2e

f -z
e+f -x-2y-z,

h,f

2
su(2n+ 1)(1)

2

x

h-x

e+(n-1)fe

z-x

x y

(5.158)
for n ≥ 2.

For n = 1 we have

21+1+1
2

031

13

e+f
e+f -x-2y,

h

e

h-
∑

xi

h,f

2

f -x-z

x y

2
su(3)(1)

(5.159)
For n = 0 we have

01+1
1

x

y

2
su(1)(1)

(5.160)
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Let us now discuss the reasons why the above five examples are not completely geometric.
Let us start with (5.160). The geometry for this example contains the −1 curve h− x− y

and hence an M2 brane wrapping this curve should give rise to a BPS particle. However,
this BPS particle cannot appear in the associated 5d KK theory for the following reason.
The existence of a particle associated to h − x − y implies that the KK mode, which is
associated to the elliptic curve 2h+ f − 2x− 2y, decomposes as a bound state of h− x− y

and h+ f −x− y but this is a contradiction since these two curves do not meet each other
and hence there cannot be such a bound state.

Another reasoning is as follows. The volume of f is 2φ where φ is the Coulomb branch
parameter associated to the above surface. On the other hand, the volume of h − x − y

is −φ. Requiring non-negative volumes for both curves implies that φ must be zero. In
other words, there is no direction in the Coulomb branch where all BPS particles have
non-negative mass. Thus, this geometry is not marginal, in the sense defined by [2], which
is a condition that must be satisfied by geometries associated to KK theories.

The precise sense in which the above self-glued F1 surface is associated to the KK
theory

2
su(1)(1)

(5.161)

is as follows. The Mori cone of the surface is generated by h− x− y, f − x, x, e. However,
since the curve h − x − y does not correspond to a BPS particle, the generators of the
Mori cone thus do not correspond to the fundamental BPS particles18 in the associated
KK theory (5.161). We propose that the fundamental BPS particles instead correspond to
the curves 2h−x−2y, f−x, x, e. This set of curves satisfies all the properties that must be
satisfied by the generators of the Mori cone of a surface. Thus, it is a complete set which
can be consistently associated to fundamental BPS particles. The KK mode can be found
as a bound state of 2h − x − 2y and f − x. One can check that this set of proposed BPS
particles is marginal in the sense that it allows a direction in Coulomb branch with all BPS
particles having non-negative volumes. See also appendix B.1 where we verify that this
description of the KK theory allows the existence of an RG flow to an N = 2 5d SCFT,
which is a fact well-known in the literature.

There are two viewpoints one can take on the relationship between self-glued F1 and the
KK theory (5.161). The first is that indeed compactifying M-theory on this surface leads to
the KK theory (5.161), but the compactification has some extra ingredients which account
for the mismatch between the set of Mori cone generators and the set of fundamental BPS
particles.19 The other viewpoint is that the relationship with self-glued F1 has no deep
meaning and is probably a red herring. At the time of writing of this paper, we do not

18We define a fundamental BPS particle to be a BPS particle that cannot arise as a bound state of other
BPS particles.

19A similar situation occurs in the frozen phase of F-theory [32], where the set of generators of the Mori
cone of the base of a threefold used for compactifying F-theory does not match the set of fundamental BPS
strings arising in the associated 6d theory.
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know which of these two viewpoints, or if either of these two viewpoints, is the correct one.
We leave this issue for future exploration, and only use the relationship between the two
as an algebraic tool to build a formalism for KK theories from which one can explicitly
perform RG flows to 5d SCFTs.

Now let us discuss the non-geometric nature of the KK theories

2
su(m)(1)

(5.162)

with m > 1. Consider as an example the case of m = 3. The surface S2 contains a
gluing curve e + f − x − 2y and hence there must be a BPS particle associated to it.
However, notice that it decomposes as e+ f − x− 2y = (e− x− y) + (f − y) such that the
components e−x−y and f−y do not intersect each other. This leads to the same problem
as discussed above, and we are forced to hypothesize that the fundamental BPS particles
are distinct from the generators of Mori cone due to some non-geometric feature in the
M-theory compactification. It is also evident that some of the components of the gluing
curves in certain surfaces (which are identified with irreducible curves in adjacent surfaces
as part of the gluing construction) fail to satisfy the necessary properties of irreducible
curves that are described at the beginning of section 5.1.2.20 Similar comments apply to
each of the m > 1 models presented above should be regarded as an algebraic proposal
which retains many of the features of the local threefolds that seem to be necessary to
compute RG flows to 5d SCFTs.

Similar comments apply to (5.107) and (5.108), and they are also not conventionally
geometric.

5.3 Gluing rules between two gauge theoretic nodes

In this section we will describe how to glue the surfaces Sa,α corresponding to a node α

to the surfaces Sb,β corresponding to another node β if there is an edge between α and β.
The gluing rules are different for different kinds of edges between the two nodes. It turns
out that the gluing rules between α and β are insensitive to the values of Ωαα and Ωββ .
This was also true for all of the cases studied in [4]. For this reason, we will often suppress
the data of Ωαα and Ωββ in this subsection.

As a preface to the following subsections, we re-emphasize that the gluing rules must
be compatible with the general consistency conditions described in section 5.1.2, and those
that do not must again be regarded, most conservatively, as an algebraic proposal that
retains certain salient features of conventional smooth threefold geometries. The basic,
underlying hypothesis of the gluing rules is that, given a pair of geometries corresponding
to circle compactifications of 6d SCFTs, if there exists a consistent gluing of these two

20For example, in the case m = 3, one can see that the surface 21+1+1
0 contains a curve class e+f−x−2y,

which is identified with the curve class h in the surface 13. Since h is irreducible, this implies that e+f−x−2y
must also be irreducible, but this leads to a contradiction (with smoothness) if the usual class f −y remains
among the generators of the Mori cone of 21+1+1

0 .
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nodes along their respective genus one fibers, then there must also exist a mutual gauging
of the respective global symmetries of the parent 6d SCFTs that allows the two theories to
be coupled together in the sense described in section 2.

5.3.1 Undirected edges between untwisted algebras
Such edges are displayed in table 3. The gluing rules for all of these cases except for
su(nα)(1) so(nβ)(1)2 were first studied in [4]. We are able to reproduce their results
using our methods.

Gluing rules for sp(nα)(1)θ su(nβ)(1) : we can take any geometry with 0 ≤ ν ≤
2nα + 8− nβ for sp(nα)(1)θ , and any geometry with 0 ≤ ν ≤ 2nβ − 2nα for su(nβ)(1). The
gluing rules below work irrespective of the value of θ. The gluing rules are:

• f − x1, xnβ in S0,α are glued to f − x1, x2nα in S0,β.

• xi − xi+1 in S0,α is glued to f in Si,β for i = 1, · · · , nβ − 1.

• xi − xi+1, x2nα−i − x2nα−i+1 in S0,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − xnα+1 in S0,β is glued to f in Snα,α.

By convention, the first item in the above list of gluing rules displays the gluings in an
order. That is, f − x1 in S0,α is glued to f − x1 in S0,β and xnβ in S0,α is glued to x2nα in
S0,β . We will adopt this convention in what follows. All the gluings should be read in the
order in which they are written.

Let us label the fiber of the Hirzebruch surface Sa,α as fa,α and the fiber of the Hirze-
bruch surface Sb,β as fb,β . According the above gluing rules, f0,α is glued to f0,β − x1 +
x2nα +∑nβ−1

i=1 fi,β where x1 and x2nα are blowups in S0,β , and 2∑nα−1
i=1 fi,α + fnα,α is glued

to x1 − x2nα in S0,β. Combining these two we see that

f0,α + 2
nα−1∑

i=1
fi,α + fnα,α ∼

nβ−1∑

i=0
fi,β (5.163)

thus confirming the gluing rule (5.60) for the torus fibers. In a similar fashion, the reader
can verify that (5.60) is satisfied for all the gluing rules that follow.

The theta angle of sp(nα) is physically irrelevant if nβ < 2nα+8 and physically relevant
if nβ = 2nα+8. Thus the above gluing rules should allow the isomorphism between (5.100)
and (5.101) to extend to the combined geometry for

sp(nα)(1)θ
su(nβ)(1) (5.164)

in the case nβ < 2nα + 8, but not in the case of nβ = 2nα + 8.
To see this for nβ < 2nα + 8, we can go to the flop frame ν = 1 for sp(nα)(1)θ with-

out changing the above gluing rules. Then we can implement the map that formed the
isomorphism between (5.100) and (5.101). Since the above gluing rules do not interact
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with blowups living on Snα,α, the map trivially extends to an isomorphism of the com-
bined geometry associated to (5.164). For nβ = 2nα + 8, we cannot reach ν > 0 frame
without changing the above gluing rules. Thus the map implementing isomorphism be-
tween (5.100) and (5.101) does not extend to an isomorphism of the combined geometry
associated to (5.164).

Gluing rules for sp(nα)(1)θ so(2nβ)(1) : here we allow 2nβ = 1̂2. We can take
any geometry with 0 ≤ ν ≤ 2nα + 8 − nβ for sp(nα)(1)θ , and any geometry with 0 ≤ ν ≤
2nβ − 4 − Ωββ − nα for so(2nβ)(1). The gluing rules below work for both values of θ. In
the future, if the value of θ is unspecified, then the gluing rules work for both the values.
In our present case, the gluing rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• xi − xi+1 in S0,α is glued to f in Si,β for i = 1, · · · , nβ − 1.

• xnβ−1 , xnβ in S0,α are glued to f − x1, y1 in Snβ ,β .

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in Snβ ,β is glued to f in Snα,α.

To show that the theta angle is irrelevant for nβ < 2nα + 8, we first notice that we can
go to the flop frame ν = 1 for sp(nα)(1)θ without changing the above gluing rules. Then
the isomorphism between (5.100) and (5.101) extends to an isomorphism of the combined
geometry for

sp(nα)(1)θ
so(2nβ)(1) (5.165)

For nβ = 2nα + 8, the above argument does not work since going to ν = 1 frame changes
the gluing rules. However, it turns out that the combined geometries for different θ are
flop equivalent up to an outer automorphism of so(2nβ). To see this, notice that the
combined geometry for (5.165) is flop equivalent to the following geometry. We pick the
frame ν = 2nα +8 for sp(nα)(1)θ and ν = 2nβ − 8 for so(2nβ)(1) with the gluing rules being:

• f − x1 − x2 in Snα,α is glued to f in Snβ ,β .

• xi − xi+1 in Snα,α is glued to f in Snβ−i,β for i = 1, · · · , nβ − 1.

• xnβ−1 , xnβ in Snα,α are glued to f − x1, y1 in S0,β.

• xi − xi+1, yi+1 − yi in S0,β are glued to f, f in Snα−i,α for i = 1, · · · , nα − 1.

• xnα − ynα in S0,β is glued to f in S0,α.

Now it is clear that exchanging f − x1 and x1 interchanges Snβ ,β and Snβ−1,β . Thus the
choice of theta angle for sp(nα)(1) is correlated to the choice of an outer automorphism
frame of so(2nβ)(1) for nβ = 2nα + 8.
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The gluing rules for a configuration having multiple edges are simply obtained by
combining the gluing rules mentioned above. We have to just make sure that we never use
the same blowup twice. For example, consider the configuration

sp(nα)(1)θ
so(2nβ)(1)su(nγ)(1) (5.166)

Then we can use any geometry with 0 ≤ ν ≤ 2nα +8−nβ−nγ for sp(nα)(1)θ , any geometry
with 0 ≤ ν ≤ 2nβ − 4−Ωββ −nα for so(2nβ)(1), and any geometry with 0 ≤ ν ≤ 2nγ − 2nα

for su(nγ)(1). The gluing rules for the sub-configuration

sp(nα)(1)θ
so(2nβ)(1) (5.167)

are the same as the ones listed above, while the gluing rules for the sub-configuration

sp(nα)(1)θ su(nγ)(1) (5.168)

are as follows:

• f − xnβ+1, xnβ+nγ in S0,α are glued to f − x1, x2nα in S0,γ .

• xnβ+i − xnβ+i+1 in S0,α is glued to f in Si,γ for i = 1, · · · , nγ − 1.

• xi − xi+1, x2nα−i − x2nα−i+1 in S0,γ are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − xnα+1 in S0,γ is glued to f in Snα,α.

In a similar way, by choosing mutually exclusive sets of blowups, we can combine the
gluing rules to obtain geometries for graphs with multiple algebras and edges between
them. Sometimes some of the blowups are allowed to appear in more than one gluing
rules. In such cases, we will explicitly mention such blowups and the configurations in
which they can appear in multiple gluing rules.

Gluing rules for sp(nα)(1)θ so(2nβ + 1)(1) : we can take any geometry with
1 ≤ ν ≤ 2nα + 8 − nβ for sp(nα)(1)θ , and any geometry with 0 ≤ ν ≤ 2nβ − 3 − Ωββ − nα

for so(2nβ + 1)(1). The gluing rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• xi − xi+1 in S0,α is glued to f in Si,β for i = 1, · · · , nβ − 1.

• xnβ , xnβ in S0,α are glued to x1, y1 in Snβ ,β .

• xi+1 − xi, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snβ ,β are glued to f − x1, x1 in Snα,α.
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To show that the theta angle is irrelevant, use the map that exchanges x1 and f − x1 in
Snα,α. If this is accompanied by xi ↔ yi in Snβ ,β, then the gluing rules remain unchanged.

Consider a configuration of the form

sp(nα)(1)θ
so(2nβ + 1)(1)so(2nγ + 1)(1) (5.169)

We wish to emphasize that we use the same blowup x1 on Snα,α in the gluing rules asso-
ciated to both

sp(nα)(1)θ
so(2nβ + 1)(1) (5.170)

and
sp(nα)(1)θ so(2nγ + 1)(1) (5.171)

More explicitly, to obtain gluing rules for (5.169), we can take any geometry with 1 ≤
ν ≤ 2nα + 8 − nβ − nγ for sp(nα)(1)θ , any geometry with 0 ≤ ν ≤ 2nβ − 3 − Ωββ − nα for
so(2nβ +1)(1), and any geometry with 0 ≤ ν ≤ 2nγ − 3−Ωγγ − nα for so(2nγ +1)(1). The
gluing rules for (5.170) are those listed above, and the gluing rules for (5.171) are:

• f − xnβ+1 − xnβ+2 in S0,α is glued to f in S0,γ .

• xnβ+i − xnβ+i+1 in S0,α is glued to f in Si,γ for i = 1, · · · , nγ − 1.

• xnβ+γ , xnβ+γ in S0,α are glued to x1, y1 in Snγ ,γ .

• xi+1 − xi, yi+1 − yi in Snγ ,γ are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snγ ,γ are glued to f − x1, x1 in Snα,α.

with the x1 in Snα,α being the same blowup as used in the gluing rules above for (5.170).
However, if we have a third neighbor so(2nδ + 1)(1) of sp(nα)(1)θ , then we must use a

second blowup x2 on Snα,α. As a consequence, we must choose a geometry with 2 ≤ ν ≤
2nα +8−nβ +nγ +nδ for sp(nα)(1)θ to obtain the combined geometry for the configuration

sp(nα)(1)θ
so(2nβ + 1)(1)so(2nγ + 1)(1)

so(2nδ + 1)(1)

(5.172)

Gluing rules for sp(nα)(1)θ so(8)(1) : we can take any geometry with 0 ≤ ν ≤
2nα +4 for sp(nα)(1)θ , and any geometry with 0 ≤ ν ≤ 4−Ωββ−nα for so(8)(1). The gluing
rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x1 − x2 in S0,α is glued to f in S3,β .
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• x2 − x3 in S0,α is glued to f in S2,β .

• x3 − x4 in S0,α is glued to f in S1,β .

• x3, x4 in S0,α are glued to f − z1, w1 in S4,β .

• zi − zi+1, wi+1 − wi in S4,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• znα − wnα in S4,β is glued to f in Snα,α.

The theta angle is irrelevant as can be seen in the ν = 1 frame of sp(nα)(1)θ .

Gluing rules for sp(nα)(1)θ so(7)(1) : we can take any geometry with 0 ≤ ν ≤
2nα + 4 for sp(nα)(1)θ , and any geometry with 0 ≤ ν ≤ 8 − 2Ωββ − nα for so(7)(1). The
gluing rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x2 − x3 in S0,α is glued to f in S2,β .

• x1 − x2, x3 − x4 in S0,α is glued to f in S3,β .

• x3, x4 in S0,α are glued to f − x1, y1 in S1,β.

• xi − xi+1, yi+1 − yi in S1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in S1,β is glued to f in Snα,α.

The theta angle is irrelevant as in the last case.

Gluing rules for sp(nα)(1)θ g
(1)
2 : we can take any geometry with 1 ≤ ν ≤

2nα + 5 for sp(nα)(1)θ , and any geometry with 0 ≤ ν ≤ 10− 3Ωββ − nα for g(1)2 . The gluing
rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x2 − x3 in S0,α is glued to f in S2,β .

• x1 − x2, x3, x3 in S0,α are glued to f, x1, y1 in S1,β.

• xi+1 − xi, yi+1 − yi in S1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in S1,β are glued to f − x1, x1 in Snα,α.

The theta angle is irrelevant.
The blowup x1 in Snα,α can be repeated once more if there is another g(1)2 neighbor or

an so(2nγ+1)(1) neighbor of sp(nα)(1)θ . That is, when we consider configurations of the form

sp(nα)(1)θ g(1)2g(1)2 (5.173)
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or of the form
sp(nα)(1)θ g(1)2so(2nγ + 1)(1) (5.174)

As before, if there is a third g2 or so(2nδ + 1)(1) neighbor of sp(nα)(1)θ , then we must use
another blowup x2 on Snα,α for the gluing rules corresponding to this neighbor.

Gluing rules for su(nα)(1) su(nβ)(1) : here we allow nα = n̂α and nα = 6̃.
We can take any geometry with 0 ≤ ν ≤ 2nα − nβ for su(nα)(1), and any geometry with
0 ≤ ν ≤ 2nβ − nα for su(nβ)(1). The gluing rules are:

• f − x1, xnβ in S0,α are glued to f − x1, xnα in S0,β .

• xi − xi+1 in S0,α is glued to f in Si,β for i = 1, · · · , nβ − 1.

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(nα)(1) so(2nβ)(1)2 : we can take any geometry with nβ ≤
ν ≤ 2nα − nβ for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 8 − nα for so(2nβ)(1).
The gluing rules are:

• f − x1 − x2, f − y1 − y2 in S0,α are glued to f, f in S0,β.

• xi − xi+1, yi − yi+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ−1, xnβ , ynβ−1, ynβ in S0,α are glued to f − x1, y1, f − ynα , xnα in Snβ ,β.

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(nα)(1) so(2nβ + 1)(1)2 : we can take any geometry with
nβ ≤ ν ≤ 2nα − nβ − 1 for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 7 − nα for
so(2nβ)(1). The (non-geometric) gluing rules are:

• f − x1 − x2, f − y1 − y2 in S0,α are glued to f, f in S0,β.

• xi − xi+1, yi − yi+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − xnβ+1, xnβ − xnβ+1, ynβ , ynβ , xnβ+1, xnβ+1 in S0,α are glued to f, f, x1, y1, f −
xnα , f − ynα in Snβ ,β .

• xi+1 − xi, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(2)(1) so(7)(1) : we must take the geometry with ν = 0
for su(2)(1), and we can take any geometry with 0 ≤ ν ≤ 7− 2Ωββ for so(7)(1). The gluing
rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x2 − x3 in S0,α is glued to f in S2,β .
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• x1 − x2, x3 − x4 in S0,α is glued to f in S3,β .

• x3, x4 in S0,α are glued to f − x1, y1 in S1,β .

• x1 − y1 in S1,β is glued to f in S1,α.

Gluing rules for su(2)(1) g
(1)
2 : we must take the geometry with ν = 1 for

su(2)(1), and any geometry with 0 ≤ ν ≤ 9− 3Ωββ for g(1)2 . The gluing rules are:

• f − x1 − x2 in S0,α is glued to f in S0,β .

• x2 − x3 in S0,α is glued to f in S2,β .

• x1 − x2, x3, x3 in S0,α are glued to f, x1, y1 in S1,β.

• f − x1, f − y1 in S1,β are glued to f − x1, x1 in S1,α.

There is another possibility appearing in the twisted case that involves an undirected
edge between two untwisted algebras. This possibility is

2
su(nα)(1)

2
su(nβ)(1)

(5.175)

and it is displayed in table 9. The gluing rules for this case are the same as the gluing rules
for

su(nα)(1) su(nβ)(1) (5.176)

presented above.

5.3.2 Undirected edges between a twisted algebra and an untwisted algebra
Now let us provide gluing rules for those cases in table 9 in which both the nodes have
non-trivial gauge algebras associated to them, such that at least one of the gauge algebras
is twisted.
Gluing rules for sp(nα)(1)θ so(2nβ)(2) : here we allow 2nβ = 1̂2. We can take
any geometry with 1 ≤ ν ≤ 2nα + 8 − nβ for sp(nα)(1)θ , and any geometry with 0 ≤ ν ≤
2nβ − 4− Ωββ − nα for so(2nβ)(2). The gluing rules are:

• f − x1 − x2, x1 − x2 in S0,α are glued to f, f in S0,β .

• xi − xi+1 in S0,α is glued to f in Si−1,β for i = 2, · · · , nβ − 1.

• xnβ , xnβ in S0,α are glued to x1, y1 in Snβ−1,β.

• xi+1 − xi, yi+1 − yi in Snβ−1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snβ−1,β are glued to f − x1, x1 in Snα,α.

The theta angle can be seen to be irrelevant by using the blowup x1 on Snα,α.
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The blowup x1 in Snα,α can be used in gluing rules corresponding to one more neighbor
of the form so(2nγ + 1)(1), g(1)2 or so(2nγ)(2) of sp(nα)(1)θ .

The fact that nβ = 2nα + 8 is not allowed manifests in the above gluing rules. The
total number of blowups carried by S0,α is at max 2nα +7 but the gluing rules require the
presence of 2nα + 8 blowups on S0,α. See the discussion around (3.36) for an explanation
of this restriction.
Gluing rules for su(nα)(1) so(2nβ)(2)2 : we can take any geometry with nβ−1 ≤
ν ≤ 2nα−nβ−1 for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−8−nα for so(2nβ)(1).
The (non-geometric) gluing rules are:

• f − x1 − x2, x1 − x2, f − x1 − y1, x1 − y1 in S0,α are glued to f, f, f, f in S0,β .

• xi+1 − xi+2, yi − yi+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 2.

• xnβ − xnβ+1, xnβ − xnβ+1, ynβ , ynβ , xnβ+1, xnβ+1 in S0,α are glued to f, f, x1, y1, f −
xnα , f − ynα in Snβ ,β .

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

5.3.3 Directed edges
Now we move onto gluing rules for edges listed in table 10.
Gluing rules for sp(nα)(1) so(2nβ)(1)2 : we can take any geometry with 0 ≤
ν ≤ 2nα + 8 − 2nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 4 − Ωββ − nα for
so(2nβ)(1). The gluing rules are:

• xnβ−1 − xnβ+1, xnβ − xnβ+2 in S0,α are glued to f, f in S0,β .

• xnβ−i−xnβ−i+1, xnβ+i−xnβ+i+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ−1.

• f − x1 − x2 in S0,α is glued to f in Snβ ,β . x2nβ−1 in S0,α is glued to f − x1 in Snβ ,β .
x2nβ in S0,α is glued to y1 in Snβ ,β.

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in Snβ ,β is glued to f in Snα,α.

From this case onward, we are dropping the subscript θ on sp(n)(1) whenever theta angle is
not physically relevant. In such cases, the gluing rules will work uniformly for both values
of θ and using arguments used earlier in the paper, the reader can easily check that the
combined geometries descending from different values of theta angle are indeed isomorphic.
Gluing rules for sp(nα)(1) so(2nβ + 1)(1)2 : we can take any geometry with
1 ≤ ν ≤ 2nα + 7− 2nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 3− Ωββ − nα

for so(2nβ + 1)(1). The (non-geometric) gluing rules are:

• xnβ − xnβ+2, xnβ+1 − xnβ+3 in S0,α are glued to f, f in S0,β .
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• xnβ−i+1−xnβ−i+2, xnβ+i+1−xnβ+i+2 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ−
1.

• f − x1 − x2, x1 − x2 in S0,α are glued to f, f in Snβ ,β . x2nβ+1 in S0,α is glued to x1
in Snβ ,β . x2nβ+1 in S0,α is glued to y1 in Snβ ,β .

• xi+1 − xi, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα in Snβ ,β is glued to x1 in Snα,α. f − ynα in Snβ ,β is glued to f − x1 in Snα,α.

Notice that the blowup x1 in Snα,α can be used for gluing sp(nα)(1) to one more neighbor,
that is in configurations of the following form

sp(nα)(1) so(2nβ + 1)(1)so(2nγ + 1)(1) 2 (5.177)

sp(nα)(1) so(2nβ + 1)(1)g(1)2 2
(5.178)

sp(nα)(1) so(2nβ + 1)(1)so(2nγ)(2) 2 (5.179)

but cannot be used for gluing sp(nα)(1) to two more neighbors.
Gluing rules for sp(nα)(1) so(2nβ)(2)2 : we can take any geometry with 1 ≤
ν ≤ 2nα+7−2nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−8−nα for so(2nβ)(2).
The (non-geometric) gluing rules are:

• xnβ − xnβ+2, xnβ+1− xnβ+3, xnβ − xnβ+1, xnβ+2− xnβ+3 in S0,α are glued to f, f, f, f

in S0,β.

• xnβ−i−xnβ−i+1, xnβ+i+2−xnβ+i+3 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ−2.

• f − x1− x2, x1− x2 in S0,α are glued to f, f in Snβ−1,β . x2nβ+1 in S0,α is glued to x1
in Snβ−1,β . x2nβ+1 in S0,α is glued to y1 in Snβ−1,β .

• xi+1 − xi, yi+1 − yi in Snβ−1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f−xnα in Snβ−1,β is glued to x1 in Snα,α. f−ynα in Snβ ,β is glued to f−x1 in Snα,α.

The blowup x1 in Snα,α can be used to glue sp(nα)(1) to exactly one more neighboring node
connected to it by an undirected edge. The neighboring node can carry so(2nγ +1)(1), g(1)2
or so(2nγ)(2).

The fact that nβ = nα + 4 is not allowed manifests in the above gluing rules. The
total number of blowups carried by S0,α is at max 2nα +7 but the gluing rules require the
presence of 2nα + 9 blowups on S0,α. See the discussion around (3.37) for an explanation
of this restriction.
Gluing rules for sp(nα)(1) so(7)(1)2 : we can take any geometry with 0 ≤ ν ≤
2nα for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2−nα for so(7)(1). The gluing rules are:

• x3 − x5, x4 − x6 in S0,α are glued to f, f in S0,β .
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• f − x1 − x2, x7, x8 in S0,α are glued to f, f − x1, y1 in S1,β .

• x2 − x3, x6 − x7 in S0,α are glued to f, f in S2,β .

• x1 − x2, x3 − x4, x5 − x6, x7 − x8 in S0,α are glued to f, f, f, f in S3,β .

• xi − xi+1, yi+1 − yi in S1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in S1,β is glued to f in Snα,α.

Gluing rules for sp(1)(1) g
(1)
22 : we can take any geometry with 1 ≤ ν ≤ 3 for

sp(1)(1). The (non-geometric) gluing rules are:

• x3 − x5, x4 − x6 in S0,α are glued to f, f in S0,β .

• x2 − x3, x6 − x7 in S0,α are glued to f, f in S2,β .

• f −x1−x2, x1−x2, x3−x4, x5−x6, x7, x7 in S0,α are glued to f, f, f, f, x1, y1 in S1,β .

• f − x1, x1 in S1,α are glued to f − x1, f − y1 in S1,β .

Notice that the blowup x1 in S1,α can be used in gluing rules corresponding to exactly one
more neighbor of sp(1)(1) carrying algebra so(2nγ + 1)(1) or so(2nγ)(2).

Gluing rules for sp(nα)(1) so(2nβ)(1)3 : we can take any geometry with 0 ≤
ν ≤ 2nα+8−3nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−8−nα for so(2nβ)(1).
The gluing rules are:

• f − x1 − x2, x2nβ−1 − x2nβ+1, x2nβ − x2nβ+2 in S0,α are glued to f, f, f in S0,β .

• xi − xi+1, x2nβ−i − x2nβ−i+1, x2nβ+i − x2nβ+i+1 in S0,α are glued to f, f, f in Si,β for
i = 1, · · · , nβ − 1.

• xnβ−1− xnβ+1, xnβ − xnβ+2, x3nβ−1, x3nβ in S0,α are glued to f, f, f − x1, y1 in Snβ ,β .

• xi − xi+1, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − ynα in Snβ ,β is glued to f in Snα,α.

Gluing rules for sp(nα)(1) so(2nβ + 1)(1)3 : we can take any geometry with
1 ≤ ν ≤ 2nα + 7 − 3nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ − 7 − nα for
so(2nβ + 1)(1). The (non-geometric) gluing rules are:

• f − x1 − x2, x2nβ − x2nβ+2, x2nβ+1 − x2nβ+3 in S0,α are glued to f, f, f in S0,β.

• xi−xi+1, x2nβ−i+1−x2nβ−i+2, x2nβ+i+1−x2nβ+i+2 in S0,α are glued to f, f, f in Si,β

for i = 1, · · · , nβ − 1.

• xnβ − xnβ+1, xnβ − xnβ+1, xnβ+1 − xnβ+2, xnβ+1 − xnβ+2, x3nβ+1, x3nβ+1 in S0,α are
glued to f, f, f, f, x1, y1 in Snβ ,β .
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• xi+1 − xi, yi+1 − yi in Snβ ,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snβ ,β are glued to f − x1, x1 in Snα,α.

Gluing rules for sp(nα)(1) so(2nβ)(2)3 : we can take any geometry with 1 ≤
ν ≤ 2nα+7−3nβ for sp(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−8−nα for so(2nβ)(2).
The (non-geometric) gluing rules are:

• f − x1 − x2, x1 − x2, x2nβ − x2nβ+2, x2nβ − x2nβ+1, x2nβ+1 − x2nβ+3, x2nβ+2 − x2nβ+3
in S0,α are glued to f, f, f, f, f, f in S0,β .

• xi+1−xi+2, x2nβ−i−x2nβ−i+1, x2nβ+i+2−x2nβ+i+3 in S0,α are glued to f, f, f in Si,β

for i = 1, · · · , nβ − 2.

• xnβ − xnβ+1, xnβ − xnβ+1, xnβ+1 − xnβ+2, xnβ+1 − xnβ+2, x3nβ+1, x3nβ+1 in S0,α are
glued to f, f, f, f, x1, y1 in Snβ−1,β.

• xi+1 − xi, yi+1 − yi in Snβ−1,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• f − xnα , f − ynα in Snβ−1,β are glued to f − x1, x1 in Snα,α.

Again, the fact that 3nβ = 2nα +8 is not allowed manifests in the above gluing rules. The
total number of blowups carried by S0,α is at max 2nα +7 but the gluing rules require the
presence of 2nα + 9 blowups on S0,α. See the discussion around (3.38) for an explanation
of this restriction.
Gluing rules for su(nα)(1) su(nβ)(1)2 : we can take any geometry with 0 ≤ ν ≤
2nα−2nβ for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−nα for su(nβ)(1). The gluing
rules are:

• f − x1, xnβ − xnβ+1, x2nβ in S0,α are glued to f − x1, f, xnα in S0,β .

• xi − xi+1, xnβ+i − xnβ+i+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(nα)(1) su(nβ)(1)3 : we can take any geometry with 0 ≤ ν ≤
2nα−3nβ for su(nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ−nα for su(nβ)(1). The gluing
rules are:

• f − x1, xnβ − xnβ+1, x2nβ − x2nβ+1, x3nβ in S0,α are glued to f − x1, f, f, xnα in S0,β .

• xi − xi+1, xnβ+i − xnβ+i+1, x2nβ+i − x2nβ+i+1 in S0,α are glued to f, f, f in Si,β for
i = 1, · · · , nβ − 1.

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

Gluing rules for su(2nα)(2) su(nβ)(1)2 : we can take any geometry with 0 ≤
ν ≤ 2nβ − 2nα for su(nβ)(1). The gluing rules are:
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• f − ynβ , xnβ , f − x1, y1 in S0,α are glued to x2nα−1, x2nα , f − x2, f − x1 in S0,β .

• xi − xi+1, yi+1 − yi in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xi − xi+1, x2nα−i − x2nα−i+1 in S0,β are glued to f, f in Si,α for i = 1, · · · , nα − 1.

• xnα − xnα+1 in S0,β is glued to f in Snα,α.

Gluing rules for su(2nα − 1)(2) su(nβ)(1)2 : we can take any geometry with
1 ≤ ν ≤ 2nβ − 2nα + 1 for su(nβ)(1). The (non-geometric) gluing rules are:

• ynβ , xnβ , f −x1, f −y1, f, f in S0,α are glued to x2nα−1, x2nα−1, y1, f −x1, x1−x2, f −
x2 − y1 in S0,β .

• xi − xi+1, yi − yi+1 in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xi+1 − xi+2, x2nα−i−1 − x2nα−i in S0,β are glued to f, f in Si,α for i = 1, · · · , nα − 2.

• xnα − xnα+1 in S0,β is glued to f in Snα−1,α.

Gluing rules for g
(1)
2 su(2)(1)2 : we can take any geometry with 1 ≤ ν ≤ 3

for g(1)2 , and we must use the geometry with ν = 1 for su(2)(1). The (non-geometric) gluing
rules are:

• f − x1, y1 in S0,α are glued to f − x2, f − x1 in S0,β .

• x1 − y1 in S0,α is glued to f in S1,β .

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3, x3 in S0,β are glued to f, x1, y1 in S1,α.

• f − x1, f − y1 in S1,α are glued to f − x1, x1 in S1,β .

Gluing rules for g
(1)
2 su(2)(1)3 : we can take any geometry with 2 ≤ ν ≤ 3

for g(1)2 , and we must use the geometry with ν = 1 for su(2)(1). The (non-geometric) gluing
rules are:

• f − x1, y1, x2 − y2 in S0,α are glued to f − x2, f − x1, f in S0,β.

• x1 − x2, y2 − y1 in S0,α are glued to f, f in S1,β.

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3, x3 in S0,β are glued to f, x1, y1 in S1,α.

• f − x1, f − y1 in S1,α are glued to f − x1, x1 in S1,β .
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Gluing rules for so(7)(1) sp(1)(1)2 and so(7)(1) su(2)(1)2 : we can
take any geometry with 1 ≤ ν ≤ 7 − 2Ωαα for so(7)(1), any geometry with 0 ≤ ν ≤ 6 for
sp(1)(1), and we must use the geometry with ν = 0 for su(2)(1). The gluing rules are:

• f − x1, y1 in S0,α are glued to f − x2, f − x1 in S0,β.

• x1 − y1 in S0,α is glued to f in S1,β .

• x3, x4 in S0,β are glued to f − x1, y1 in S1,α.

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3 − x4 in S0,β are glued to f, f in S3,α.

• x1 − y1 in S1,α is glued to f in S1,β .

Gluing rules for so(7)(1) su(2)(1)3 : we can take any geometry with 2 ≤ ν ≤ 3
for so(7)(1), and we must use the geometry with ν = 0 for su(2)(1). The gluing rules are:

• f − x1, y1, x2 − y2 in S0,α are glued to f − x2, f − x1, f in S0,β.

• x1 − x2, y2 − y1 in S0,α are glued to f, f in S1,β.

• x3, x4 in S0,β are glued to f − x1, y1 in S1,α.

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3 − x4 in S0,β are glued to f, f in S3,α.

• x1 − y1 in S1,α is glued to f in S1,β .

Gluing rules for so(8)(2) sp(1)(1)2 : we can take any geometry with 0 ≤ ν ≤ 6
for sp(1)(1). The gluing rules are:

• f − x1, y1 in S1,α are glued to x3, x4 in S0,β.

• x1 − y1 in S1,α is glued to f in S1,β .

• f − x1 − x4, f − x2 − x3 in S0,β are glued to f, f in S0,α.

• x2 − x3 in S0,β is glued to f in S2,α.

• x1 − x2, x3 − x4 in S0,β are glued to f, f in S3,α.

Gluing rules for so(2nα)(1) sp(nβ)(1)2 : we can take any geometry with nβ ≤
ν ≤ 2nα − 4− Ωαα − nβ for so(2nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ + 8 − nα for
sp(nβ)(1). The gluing rules are:

• f − x1, y1 in S0,α are glued to f − x2, f − x1 in S0,β.
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• xi − xi+1, yi+1 − yi in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in S0,α is glued to f in Snβ ,β .

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

• xnα−1, xnα in S0,β are glued to f − x1, y1 in Snα,α.

• xi − xi+1, yi+1 − yi in Snα,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in Snα,α is glued to f in Snβ ,β .

Gluing rules for so(2nα + 1)(1) sp(nβ)(1)2 : we can take any geometry with
nβ ≤ ν ≤ 2nα−3−Ωαα−nβ for so(2nα+1)(1), and any geometry with 1 ≤ ν ≤ 2nβ+8−nα

for sp(nβ)(1). The gluing rules are:

• f − x1, y1 in S0,α are glued to f − x2, f − x1 in S0,β .

• xi − xi+1, yi+1 − yi in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in S0,α is glued to f in Snβ ,β .

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

• xnα , xnα in S0,β are glued to x1, y1 in Snα,α.

• xi+1 − xi, yi+1 − yi in Snα,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• f − xnβ , f − ynβ in Snα,α are glued to f − x1, x1 in Snβ ,β.

The blowup x1 in Snβ ,β can be used to glue sp(nβ)(1) to exactly one more neighboring node
connected to it by an undirected edge. The neighboring node can carry so(2nγ +1)(1), g(1)2
or so(2nγ)(2).

Gluing rules for so(2nα)(2) sp(nβ)(1)2 : we can take any geometry with nβ ≤
ν ≤ 2nα−8−nβ for so(2nα)(2), and any geometry with 1 ≤ ν ≤ 2nβ +8−nα for sp(nβ)(1).
The gluing rules are:

• f − x1, y1, f in S0,α are glued to f − x2, f − x1, x1 − x2 in S0,β .

• xi − xi+1, yi+1 − yi in S0,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in S0,α is glued to f in Snβ ,β .

• xi+1 − xi+2 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 2.

• xnα , xnα in S0,β are glued to x1, y1 in Snα−1,α.

• xi+1 − xi, yi+1 − yi in Snα−1,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• f − xnβ , f − ynβ in Snα−1,α are glued to f − x1, x1 in Snβ ,β .
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Again, the blowup x1 in Snβ ,β can be used to glue sp(nβ)(1) to exactly one more neighboring
node carrying so(2nγ + 1)(1), g(1)2 or so(2nγ)(2).

Gluing rules for so(2nα)(1) sp(nβ)(1)3 : we can take any geometry with 2nβ ≤
ν ≤ 2nα−8−nβ for so(2nα)(1), and any geometry with 0 ≤ ν ≤ 2nβ +8−nα for sp(nβ)(1).
The gluing rules are:

• f − x1, x2nβ − y2nβ , y1 in S0,α are glued to f − x2, f, f − x1 in S0,β.

• xi− xi+1, yi+1− yi, x2nβ−i− x2nβ−i+1, y2nβ−i+1− y2nβ−i in S0,α are glued to f, f, f, f

in Si,β for i = 1, · · · , nβ − 1.

• xnβ − xnβ+1, ynβ+1 − ynβ in S0,α are glued to f, f in Snβ ,β .

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

• xnα−1, xnα in S0,β are glued to f − x1, y1 in Snα,α.

• xi − xi+1, yi+1 − yi in Snα,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• xnβ − ynβ in Snα,α is glued to f in Snβ ,β .

Gluing rules for so(2nα + 1)(1) sp(nβ)(1)3 : we can take any geometry with
2nβ ≤ ν ≤ 2nα − 7− nβ for so(2nα + 1)(1), and any geometry with 1 ≤ ν ≤ 2nβ + 8− nα

for sp(nβ)(1). The (non-geometric) gluing rules are:

• f − x1, x2nβ − y2nβ , y1 in S0,α are glued to f − x2, f, f − x1 in S0,β.

• xi− xi+1, yi+1− yi, x2nβ−i− x2nβ−i+1, y2nβ−i+1− y2nβ−i in S0,α are glued to f, f, f, f

in Si,β for i = 1, · · · , nβ − 1.

• xnβ − xnβ+1, ynβ+1 − ynβ in S0,α are glued to f, f in Snβ ,β .

• xi − xi+1 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 1.

• xnα , xnα in S0,β are glued to x1, y1 in Snα,α.

• xi+1 − xi, yi+1 − yi in Snα,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• f − xnβ , f − ynβ in Snα,α are glued to f − x1, x1 in Snβ ,β.

Gluing rules for so(2nα)(2) sp(nβ)(1)3 : we can take any geometry with 2nβ ≤
ν ≤ 2nα−8−nβ for so(2nα)(2), and any geometry with 1 ≤ ν ≤ 2nβ +8−nα for sp(nβ)(1).
The (non-geometric) gluing rules are:

• f − x1, x2nβ − y2nβ , y1, f in S0,α are glued to f − x2, f, f − x1, x1 − x2 in S0,β .

• xi− xi+1, yi+1− yi, x2nβ−i− x2nβ−i+1, y2nβ−i+1− y2nβ−i in S0,α are glued to f, f, f, f

in Si,β for i = 1, · · · , nβ − 1.

– 87 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

• xnβ − xnβ+1, ynβ+1 − ynβ in S0,α are glued to f, f in Snβ ,β .

• xi+1 − xi+2 in S0,β is glued to f in Si,α for i = 1, · · · , nα − 2.

• xnα , xnα in S0,β are glued to x1, y1 in Snα−1,α.

• xi+1 − xi, yi+1 − yi in Snα−1,α are glued to f, f in Si,β for i = 1, · · · , nβ − 1.

• f − xnβ , f − ynβ in Snα−1,α are glued to f − x1, x1 in Snβ ,β .

5.4 Gluing rules involving non-gauge-theoretic nodes

There are only three such nodes which are listed below

1
sp(0)(1)θ

(5.180)

2
su(1)(1)

(5.181)

2
su(1)(1)

(5.182)

The theta angle for sp(0)(1) is physically irrelevant as long as there is no neighboring su(8).
First consider the edges shown as last two entries of table 4. The gluing rules for these

cases are as follows.

Gluing rules for 2
su(1)(1)

1
sp(1)(1)

and 2
su(1)(1)

2
su(2)(1)

: we can choose any
geometry with 1 ≤ ν ≤ 10 for sp(1)(1) and any geometry with 1 ≤ ν ≤ 4 for su(2)(1). The
(non-geometric) gluing rules are:

• f − x− y in S0,α is glued to f in S0,β .

• x, y in S0,α are glued to f − x1, x1 in S1,β .

As in cases discussed in last subsection, the blowup x1 in S1,β can be used for gluing sp(1)(1)
or su(2)(1) with another neighbor such that the gluing rules for sp(1)(1) or su(2)(1) with
that neighbor allow a blowup on S1,β to be used for more than once.

The gluing rules for the edges shown in table 5 are as follows.

Gluing rules for 1
sp(0)(1)

2
su(1)(1)

:

• 3l −∑xi in S0,α is glued to f in S0,β .

See appendix (B.2) for a derivation of the above gluing rules.
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Gluing rules for 2
su(1)(1)

2
su(1)(1)

:

• f − x, x in S0,α are glued to f − x, x in S0,β .

The blowups x in S0,α and x in S0,β can be used for gluing to other su(1)(1) neighbors. See
appendix (B.2) for a derivation of the above gluing rules.

Now consider the edges shown in the last entry of table 9:

Gluing rules for 2
su(2)(1)

2
su(1)(1)

:

• f − x1, x1 in S0,α are glued to x, y in S0,β .

• f in S1,α is glued to f − x− y in S0,β .

Gluing rules for 2
su(1)(1)

2
su(1)(1)

:

• 2h− x− 2y, f − x in S0,α are glued to f − x, x in S0,β .

The blowup x in S0,β can be used for gluing to other su(1)(1) neighbors. See appendix (B.2)
for a derivation of the above gluing rules. We remind the reader that this gluing rule involves
the non-geometric node (5.161) and hence the above gluing rules should be viewed only
as an algebraic description and not as a geometric description. See the discussion after
equation (5.160) for more details.

Now consider the last entry of table 11:

Gluing rules for 2
su(2)(1)

2
su(1)(1)

2 : we can use any geometry with 1 ≤ ν ≤ 3 for
su(2)(1). The gluing rules are:

• f − x1, x1 in S0,α are glued to x, y in S0,β .

• f − x1, x1 in S1,α are glued to f − x, f − y in S0,β .

The blowups x1 in S0,α and x1 in S1,α can also be used for gluing to other neighboring
nodes of su(2)(1) that carry some su(n)(1).

Gluing rules for 2
su(2)(1)

2
su(1)(1)

3 : we can use any geometry with 1 ≤ ν ≤ 3 for
su(2)(1). The gluing rules are:

• f − x1, x1 in S0,α are glued to x, y in S0,β .

• f − x1, x1 in S1,α are glued to 2f − x, f − y in S0,β .
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The blowups x1 in S0,α and x1 in S1,α can also be used for gluing to other neighboring
nodes of su(2)(1) that carry some su(n)(1).

Gluing rules for 2
su(1)(1)

2
su(1)(1)

2 :

• f − x, x in S0,α are glued to 2f − x, x in S0,β .

(Note that the gluing rules proposed above are non-geometric.) The blowups x in S0,α and
x in S0,β can be used to further glue to other neighboring su(1)(1). See appendix (B.2) for
a derivation of the above gluing rules.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

3 :

• f − x, x in S0,α are glued to 3f − x, x in S0,β .

(Note that the gluing rules proposed above are non-geometric.) The blowups x in S0,α and
x in S0,β can be used to further glue to other neighboring su(1)(1).

5.4.1 sp(0)(1) gluings: untwisted, without non-simply-laced

At this point, we are only left with gluings of sp(0)(1) to other nodes carrying non-trivial
gauge algebras. In this case, we also have to provide gluing rules for two neighbors at a
time. This is because the torus fiber for dP9 is 3l−∑xi which involves all of the blowups.
So all of the blowups must appear in the gluing rules associated to each edge. This is in
stark contrast to the gluing rules for non-trivial algebras g(q) where (typically) the blowups
used for gluing rules associated to different edges are different. Thus in the case of g(q),
the gluing rules for different edges naturally decouple. However, in the case of sp(0)(1),
we have to provide gluing rules for multiple neighbors at a time and show explicitly that
the curves inside dP9 involved in gluing rules for different edges do not intersect. It turns
out that in the context of 6d SCFTs, sp(0)(1) can only have a maximum of two neighbors
carrying non-trivial algebras.

In the case when all the neighbors are untwisted, sp(0)(1) gluings were first studied
in [4]. For the completeness of our presentation, we reproduce their results in this subsection
(providing enhanced explanations while we do so) before moving onto sp(0)(1) gluings
arising in the twisted case. Following [4], we will represent these sp(0)(1) gluing rules in a
graphical notation that we review as we review the results of [4].

To start with, let us consider the gluing rules for

sp(0)(1) e(1)8 (5.183)
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which are displayed below

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

sp(0)(1) e(1)8

(5.184)
where each node denotes a curve in dP9 whose genus is zero and self-intersection is −2. If
there are n edges between two nodes, it denotes that the two corresponding curves intersect
in n number of points. Each curve Ca shown above is glued to the fiber f of a Hirzebruch
surface Sa in the geometry associated to e(1)8 . Which curve glues to the fiber of which Sa

can be figured out from the position of the curve in the graph above, because the graph
takes the form of the corresponding Dynkin diagram, which in this case is e(1)8 . Notice that

∑

a

daCa = (x8 − x9) + 2(x7 − x8) + 3(x6 − x7) + 4(x5 − x6) + 5(x4 − x5) + 6(x1 − x4)

+ 4(x2 − x1) + 2(x3 − x2) + 3(l − x1 − x2 − x3)
= 3l −

∑
xi (5.185)

and thus the torus fibers on both nodes are glued to each other, satisfying (5.60) for the
untwisted case.

Now, we can use the above gluing rules to obtain gluing rules for regular maximal
subalgebras of e8 as follows. For example, to obtain the gluing rules for

su(2)(1) sp(0)(1) e(1)7 (5.186)

we first delete the second curve from the left x7 − x8 in (5.184). After this deletion, the
graph takes the form of Dynkin diagram for finite algebra su(2)⊕ e7. To obtain the gluing
rules for (5.186), we simply need to add two extra −2 curves to the graph such that the
finite Dynkin diagram of su(2) is converted to the affine Dynkin diagram of su(2)(1) and
similarly the finite Dynkin diagram of e7 is converted to the affine Dynkin diagram of e(1)7 .
This is easy to do since we know that a weighted sum of the −2 curves participating in
gluing to each affine Dynkin diagram must be 3l −∑xi. This requirement uniquely fixes

– 91 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

the extra −2 curves that need to be added. We thus obtain

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

l − x3 − x8 − x9x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(2)(1)sp(0)(1)e(1)7

(5.187)
as the gluing rules for (5.186). l − x3 − x8 − x9 glues to the fiber of affine surface for e(1)7
and x8 − x9 glues to the fiber of affine surface for su(2)(1). Notice that the curves in each
sub-Dynkin diagram sum up to 3l −∑xi if the sum is weighted by the Coxeter labels of
the corresponding affine Dynkin diagram. Also notice that the curves forming the Dynkin
diagram for e(1)7 do not intersect the curves forming the Dynkin diagram for su(2)(1), which
explicitly shows that the gluing rules for the two neighbors of sp(0)(1) decouple from each
other as required.

Incidentally, (5.187) allows us to determined gluing rules for

sp(0)(1) e(1)7 (5.188)

and
sp(0)(1) su(2)(1) (5.189)

without any other second neighbor for sp(0)(1). This is done by only keeping the curves
spanning the Dynkin diagram of e(1)7 or the Dynkin diagram of su(2)(1), while omitting the
rest of the curves from (5.187). Thus, we obtain

l − x3 − x8 − x9x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

sp(0)(1) e(1)7

(5.190)
with the fiber in affine surface glued to l − x3 − x8 − x9 and

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

sp(0)(1) su(2)(1)

(5.191)

with the fiber in affine surface glued to x8 − x9.
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Deleting other nodes from (5.184), we can obtain the following gluing rules

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1

2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x2 − x3

sp(0)(1) so(16)(1)

(5.192)

where x8 − x9 glues to the fiber of affine surface for so(16)(1).

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x6 − x7 − x8

sp(0)(1) su(9)(1)

(5.193)
where x8 − x9 glues to the fiber of affine surface for su(9)(1).

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

l − x7 − x8 − x9

x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(3)(1)sp(0)(1)e(1)6

(5.194)

where l − x7 − x8 − x9 glues to the fiber of affine surface for e(1)6 and x8 − x9 glues to the
fiber of affine surface for su(3)(1). Incidentally, this also allows us to obtain the following
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individual gluing rules

l − x7 − x8 − x9

x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

sp(0)(1) e(1)6

(5.195)

with the fiber in affine surface glued to l − x7 − x8 − x9, and

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

sp(0)(1) su(3)(1)

(5.196)

with the fiber in affine surface glued to x8 − x9.

Now we can delete some nodes from the above set of gluing rules to obtain gluing rules
for other algebras that arise as regular maximal subalgebras of the above algebras. For
example, by deleting nodes from (5.192), we can obtain the gluing rules for

so(8)(1) sp(0)(1) so(8)(1) (5.197)
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since so(8)⊕ so(8) is a regular maximal subalgebra of so(16). The gluing rules are

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9

x6 − x7

x4 − x5 x1 − x4 x2 − x1

l − x3 − x6 − x7

l − x1 − x2 − x3

so(8)(1)sp(0)(1)so(8)(1)

(5.198)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.
Tha bove gluing rules imply that the gluing rules for a single so(8)(1) are obtained by
amputating one of the so(8)(1) sub-graph from (5.198).

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7

l − x3 − x6 − x7

sp(0)(1) so(8)(1)

(5.199)

with the fiber in affine surface glued to x8 − x9. The reader might wonder what happens
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if amputate the other so(8)(1) sub-graph from (5.198) to obtain the gluing rules as

2l − x1 − x2 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1

l − x1 − x2 − x3

(5.200)

It turns out that (5.199) and (5.200) are related by an automorphism of dP9. To see this,
let’s first relabel the blowups as

x1 ↔ x7 (5.201)
x2 ↔ x6 (5.202)
x3 ↔ x5 (5.203)
x4 ↔ x8 (5.204)

so that (5.199) is converted to

x4 − x9 x1 − x4

2l − x1 − x2 − x3 − x6 − x7 − x8

x2 − x1

l − x1 − x2 − x5 (5.205)

Now we perform two basic automorphisms of dP9. The basic automorphisms are described
in appendix A.2 and involve a choice of three blowups. For the first basic automorphism
we choose the blowups x1, x2 and x4, and after performing this operation the gluing
rules (5.205) are transformed to

l − x1 − x2 − x9 x1 − x4

2l − x1 − x2 − x3 − x6 − x7 − x8

x2 − x1

x4 − x5 (5.206)
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For the second basic automorphism we choose x6, x7 and x8 thus transforming (5.206) to

2l − x1 − x2 − x6 − x7 − x8 − x9 x1 − x4

l − x1 − x2 − x3

x2 − x1

x4 − x5 (5.207)

which precisely matches (5.200), thus demonstrating that (5.199) and (5.200) are isomor-
phic gluing rules.

This will hold true in general in what follows. Whenever we will find two seemingly
different gluing rules, they will always turn out to be related by an automorphism, except
for two cases. These two cases are the gluing rules for su(8)(1) and su(8)(2), where we find
two possible gluing rules in each case. The two possibilities correspond to different choices
of theta angle for sp(0) in the 6d theory.

Let us collect all of the remaining gluing rules below

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x6 − x7

x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(4)(1)sp(0)(1)so(10)(1)

(5.208)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4

2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x3 − x4

sp(0)(1) so(14)(1)

(5.209)
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where the fiber in affine surface glues to x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

l − x7 − x8 − x9

x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(2)(1)sp(0)(1)e(1)6

(5.210)

where the fibers in affine surfaces glue to x8 − x9 and l − x7 − x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1

2l − x1 − x2 − x4 − x5 − x8 − x9 l − x1 − x2 − x3

su(2)(1)sp(0)(1)so(12)(1)

(5.211)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x4 − x5 − x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(3)(1)sp(0)(1)so(10)(1)

(5.212)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x6 − x7

x1 − x4 x2 − x1 x3 − x2

l − x2 − x3 − x5

su(4)(1)sp(0)(1)so(8)(1)

(5.213)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1

2l − x1 − x2 − x4 − x5 − x8 − x9 l − x1 − x2 − x3

sp(0)(1) so(12)(1)

(5.214)

where the fiber in affine surface glues to 2l − x1 − x2 − x4 − x5 − x8 − x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4

3l − 2x1 − x2 − x3 − x4 − x5 − x6 − x7 − x8

sp(0)(1) su(7)(1)

(5.215)
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where the fiber in affine surface glues to x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

su(2)(1)sp(0)(1)so(10)(1)

(5.216)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2

l − x2 − x3 − x5

su(3)(1)sp(0)(1)so(8)(1)

(5.217)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

2l − x2 − x3 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1 x3 − x2

l − x1 − x2 − x3

sp(0)(1) so(10)(1)

(5.218)
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where the fiber in affine surface glues to 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5

3l − x1 − x2 − x3 − 2x4 − x5 − x6 − x7 − x8

sp(0)(1) su(6)(1)

(5.219)

where the fiber in affine surface glues to x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2

l − x2 − x3 − x5

su(2)(1)sp(0)(1)so(8)(1)

(5.220)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x5 − x6 x4 − x5 x1 − x4 x2 − x1 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(6)(1)

(5.221)
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where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x4 − x6 x1 − x4 x2 − x1 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(5)(1)

(5.222)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x1 − x6 x2 − x1 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(4)(1)

(5.223)
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where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x2 − x6 x3 − x2

3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(3)(1)

(5.224)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x3 − x6 3l − x1 − x2 − 2x3 − x4 − x5 − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)su(2)(1)

(5.225)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−2x3−x4−x5−x7−x8−x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6

3l − x1 − x2 − x3 − x4 − 2x5 − x6 − x7 − x8

sp(0)(1) su(5)(1)

(5.226)
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where the fiber in affine surface glues to x8 − x9.

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

x6 − x7

sp(0)(1) su(4)(1)

(5.227)

where the fiber in affine surface glues to x8 − x9.

Finally, we come to the gluing rules for su(8)(1) for which we have two versions depend-
ing on the choice of theta angle for sp(0). The adjoint of e8 decomposes into the adjoint
plus an irreducible spinor of so(16). In our study, this spinor corresponds to the node of
so(16) Dynkin diagram whose corresponding fiber is glued to x2 − x1 in (5.192). This is
visible from the gluing rules (5.184) for e(1)8 since the extra particles in adjoint of e8 come
from the curve x3−x2 which indeed transform in the spinor of so(16) associated to x2−x1
since x3 − x2 intersects x2 − x1.

Now, to obtain the gluing rules for su(8)(1), we delete 2l− x1 − x2 − x4 − x5 − x6 − x7
from (5.192), and we have the choice to either delete l − x1 − x2 − x3 or x2 − x1. This
latter choice leads to another choice of spinor of so(16). If we delete x2 − x1, then this
matches the previous choice of spinor we had, and leads to the gluing rules for θ = 0. If we
delete l− x1− x2− x3, then this does not match the previous choice of spinor we had, and
leads to the gluing rules for θ = π. In the latter case, su(8) gauges the spinor of so(16) in
the adjoint of e8, and in the former case it does not. Thus the latter case has less global
symmetry compared to former. We refer the reader to [38] for more details. The two gluing
rules are thus as follows:

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1

3l − x1 − 2x2 − x3 − x4 − x5 − x6 − x7 − x8

sp(0)(1)π su(8)(1)

(5.228)
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x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 l − x1 − x2 − x3

2l − x1 − x4 − x5 − x6 − x7 − x8

sp(0)(1)0 su(8)(1)

(5.229)
In both the cases, the fiber in affine surface glues to x8 − x9.

5.4.2 sp(0)(1) gluings: untwisted, with non-simply-laced
Until now, we have only considered simply laced subalgebras of e8. To generalize our gluing
rules to non-simply laced subalgebras of e8, we use the folding of Dynkin diagrams. The
Dynkin diagrams for untwisted affine non-simply laced algebras can be produced by folding
the Dynkin diagrams for untwisted affine simply laced algebras. The foldings relevant in
our analysis are:

so(2n)(1) → so(2n− 1)(1) (5.230)

e(1)6 → f(1)4 (5.231)

so(8)(1) → so(7)(1) → g(1)2 (5.232)

For example, to obtain the gluing rules for

sp(0)(1) so(15)(1) (5.233)

we simply fold the graph (5.192) to obtain

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) so(15)(1)

(5.234)
where the fiber in affine surface glues to x8 − x9 and the rightmost node denotes two −2
curves x2 − x1 and l− x1 − x2 − x3. Both of these curves glue to a copy of the fiber of the
corresponding surface in the geometry for so(15)(1). We can check that the weighted sum
of fibers equals 3l −∑xi.

Since we can now have multiple gluing curves associated to the gluing of dP9 to some
other surface, we have to make sure that all of the gluing curves are on an equal footing.
More precisely, we have to make sure that the condition (5.17) is satisfied, which translates
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to the following condition. Let Sa be the different surfaces dP9 is glued to, and let Ci
a be

the different gluing curves in dP9 for the gluing to Sa. The total gluing curve for the gluing
to Sa is

Ca :=
∑

i

Ci
a (5.235)

Then (5.17) translates to the condition that

Ci
a · Cb = Cj

a · Cb (5.236)

for all i, j, a, b. It can be easily verified that (5.234) satisfies this condition. This condi-
tion (5.236) will be an important consistency condition in what follows and the reader can
verify that all of the geometries that follow satisfy (5.236).

By folding other gluing rules presented above, we can obtain the following gluing rules

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x6 − x7

l − x1 − x2 − x3, x4 − x5 x1 − x4 x2 − x1 x3 − x2

su(4)(1)sp(0)(1)so(9)(1)

(5.237)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4, l − x1 − x3 − x4

2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) so(13)(1)

(5.238)
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where the fiber in affine surface glues to x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

su(3)(1)sp(0)(1)f(1)4

(5.239)

where the fibers in affine surfaces glue to x8 − x9 and l − x7 − x8 − x9.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7, l − x3 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1

l − x1 − x2 − x3

so(7)(1)sp(0)(1)so(8)(1)

(5.240)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9

x6 − x7, l − x3 − x6 − x7

x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

so(7)(1)sp(0)(1)so(7)(1)

(5.241)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

2l − x1 − x2 − x6 − x7 − x8 − x9

x4 − x5 x1 − x4 x2 − x1

l − x1 − x2 − x3

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

so(8)(1)sp(0)(1)g(1)2

(5.242)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

2l − x1 − x2 − x4 − x5 − x8 − x9

so(11)(1)sp(0)(1)su(2)(1)

(5.243)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x4 − x5 − x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

l − x1 − x2 − x3, x4 − x5 x1 − x4 x2 − x1 x3 − x2

so(9)(1)sp(0)(1)su(3)(1)

(5.244)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x6 − x7

x1 − x4 x2 − x1 x3 − x2, l − x2 − x3 − x5

so(7)(1)sp(0)(1)su(4)(1)

(5.245)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

2l − x1 − x2 − x4 − x5 − x8 − x9

sp(0)(1) so(11)(1)

(5.246)

where the fiber in affine surface glues to 2l − x1 − x2 − x4 − x5 − x8 − x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

su(2)(1)sp(0)(1)f(1)4

(5.247)

where the fibers in affine surfaces glue to x8 − x9 and l − x7 − x8 − x9.

x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

2l − x1 − x2 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

so(7)(1)sp(0)(1)g(1)2

(5.248)
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where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

x4 − x5

x1 − x4

x2 − x1

3l − x1 − 2x2 − x3 − x4 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

su(4)(1)sp(0)(1)g(1)2

(5.249)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−2x2−x3−x4−x6−x7−x8−x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

2l − x2 − x3 − x6 − x7 − x8 − x9

l − x1 − x2 − x3, x4 − x5 x1 − x4 x2 − x1 x3 − x2

so(9)(1)sp(0)(1)su(2)(1)

(5.250)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2, l − x2 − x3 − x5

so(7)(1)sp(0)(1)su(3)(1)

(5.251)

– 111 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

2l − x2 − x3 − x6 − x7 − x8 − x9

l − x1 − x2 − x3, x4 − x5 x1 − x4 x2 − x1 x3 − x2

sp(0)(1) so(9)(1)

(5.252)

where the fiber in affine surface glues to 2l − x2 − x3 − x6 − x7 − x8 − x9.

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

sp(0)(1) f(1)4

(5.253)

where the fiber in affine surface glues to l − x7 − x8 − x9.

x1 − x4 x2 − x1, x4 − x5, l − x1 − x2 − x32l − x1 − x2 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

g(1)2sp(0)(1)g(1)2

(5.254)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

x4 − x5 x1 − x4

3l − 2x1 − x2 − x3 − x4 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

g(1)2sp(0)(1)su(3)(1)

(5.255)
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where the fibers in affine surfaces glue to x8−x9 and 3l−2x1−x2−x3−x4−x6−x7−x8−x9.

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2, l − x2 − x3 − x5

su(2)(1)sp(0)(1)so(7)(1)

(5.256)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x2 − x3 − x6 − x7 − x8 − x9.

2l − x2 − x3 − x6 − x7 − x8 − x9

x1 − x4 x2 − x1 x3 − x2, l − x2 − x3 − x5

sp(0)(1) so(7)(1)

(5.257)

where the fiber in affine surface glues to 2l − x2 − x3− x6 − x7 − x8 − x9.

x4 − x5 3l − x1 − x2 − x3 − 2x4 − x6 − x7 − x8 − x9

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

g(1)2sp(0)(1)su(2)(1)

(5.258)

where the fibers in affine surfaces glue to x8−x9 and 3l−x1−x2−x3−2x4−x6−x7−x8−x9.

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) g(1)2

(5.259)

where the fiber in affine surface glues to x8 − x9.
The above cases do not completely exhaust all the possible non-simply laced subal-

gebras of e8. Some of these subalgebras cannot be thought of as foldings of simply laced
subalgebras of e8. One such example is f4 ⊕ g2. Notice that unfolding f(1)4 ⊕ g(1)2 leads
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to e(1)6 ⊕ so(8)(1), but e6 ⊕ so(8) is not a subalgebra of e8. To obtain the gluing rules for
this example, we find a collection of curves giving rise to g(1)2 not intersecting (5.253) and
satisfying (5.236):

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

x8 − x9 x7 − x8 l − x1 − x4 − x7, l − x2 − x5 − x7, l − x3 − x6 − x7

g(1)2sp(0)(1)f(1)4

(5.260)

where the fibers in affine surfaces glue to x8 − x9 and l − x7 − x8 − x9. Notice that even
though, by the virtue of (5.236), the total gluing curves see different component gluing
curves equally, the different components do not. For example, even though the gluing curve
x3−x2 has different intersections with the gluing curves l−x2−x5−x7 and l−x1−x4−x7,
the total gluing curve (x3 − x2) + (x5 − x6) equal intersections with the two gluing curves
l − x2 − x5 − x7 and l − x1 − x4 − x7, as required by (5.236). Similar remarks apply to
many of the gluing rules that follow.

To obtain the gluing rules for so(9)⊕so(7), we start from (5.241) and extend the chains
for one of the so(7):

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9

x6 − x7

x4 − x5 x1 − x4 x2 − x1, l − x1 − x2 − x3

x2 − x6, l − x2 − x3 − x6

so(7)(1)sp(0)(1)so(9)(1)

(5.261)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.
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By folding so(7)(1) we can obtain g(1)2 , so folding the above gluing rules we obtain the
following gluing rules

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9 x1 − x4 x2 − x1, l − x1 − x2 − x3, x4 − x5

x2 − x6, l − x2 − x3 − x6

g(1)2sp(0)(1)so(9)(1)

(5.262)

where the fibers in affine surfaces glue to x8 − x9 and 2l − x1 − x2 − x6 − x7 − x8 − x9.

5.4.3 sp(0)(1) gluings: twisted algebras, undirected edges
Now we provide gluing rules for the cases involving twisted gauge algebras and undirected
edges, that is gluing rules of the form

g(qα)
α sp(0)(1) g

(qγ)
γ (5.263)

Most of these gluing rules can be understood as foldings of gluing rules of the form

g(1)α sp(0)(1) g(1)γ (5.264)

provided above. The relevant foldings are

so(4n)(1) → su(2n)(2) → su(2n− 1)(2) (5.265)
so(7)(1) → su(4)(2) → su(3)(2) (5.266)

so(2n+ 1)(1) → so(2n)(2) (5.267)

g(1)2 → su(3)(2) (5.268)

e(1)7 → e(2)6 (5.269)

f(1)4 → so(8)(3) (5.270)

For example, for so(14)(2), we fold (5.234) to obtain

x8 − x9, x7 − x8 x6 − x7 x5 − x6 x4 − x5 x1 − x4 x2 − x1,
2l − x1 − x2 − x4 l − x1 − x2 − x3
−x5 − x6 − x7

sp(0)(1) so(14)(2)

(5.271)
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where two copies of fibers in affine surface glue to x8−x9, 2l−x1−x2−x4−x5−x6−x7. Let
da be the dual Coxeter labels for so(14)(2) and fa be the fibers in the Hirzebruch surfaces
corresponding to so(14)(2). Then,

2dafa=(x8−x9)+(2l−x1−x2−x4−x5−x6−x7)+2(x7−x8)+2(x6−x7)+2(x5−x6)
+2(x4−x5)+2(x1−x4)+(x2−x1)+(l−x1−x2−x3)

= 3l−
∑

xi (5.272)

Thus, (5.60) holds true in this case. Same holds true for all the following examples in this
subsection, as the reader can verify.

To obtain other so(2n)(2) of lower rank, we add the curves lying in the middle of the
chain in (5.271). Adding x4 − x5 to x1‘− x4, we obtain the gluing rules for so(12)(2):

x8 − x9, x7 − x8 x6 − x7 x5 − x6 x1 − x5 x2 − x1,
2l − x1 − x2 − x4 l − x1 − x2 − x3
−x5 − x6 − x7

sp(0)(1) so(12)(2)

(5.273)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to fibers in affine surface.
Continuing in this fashion, we obtain

x8 − x9, x7 − x8 x6 − x7 x1 − x6 x2 − x1,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x2 − x3

sp(0)(1) so(10)(2)

(5.274)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to fibers in affine surface.

x8 − x9, x7 − x8 x1 − x7 x2 − x1,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x2 − x3

sp(0)(1) so(8)(2)

(5.275)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to fibers in affine surface.

x8 − x9, x1 − x8 x2 − x1,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x1 − x2 − x3

sp(0)(1) su(4)(2)

(5.276)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to fibers in affine surface.
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By folding (5.192), we obtain the following two gluing rules

x8 − x9, x7 − x8, x6 − x7, x5 − x6

2l − x1 − x2 − x4 − x5 − x6 − x7, l − x1 − x2 − x3

x4 − x5x1 − x4x2 − x1

sp(0)(1)0 su(8)(2)

(5.277)

where x8 − x9, x2 − x1 glue to fibers in the affine surface.

x8 − x9, x7 − x8, x6 − x7, x5 − x6

2l − x1 − x2 − x4 − x5 − x6 − x7, x2 − x1

x4 − x5x1 − x4l − x1 − x2 − x3

sp(0)(1)π su(8)(2)

(5.278)

where x8 − x9, l − x1 − x2 − x3 glue to fibers in the affine surface.
Combining x6 − x7, x5 − x6 and x4 − x5 in (5.277), we obtain the gluing rules for

su(6)(2):

x8 − x9, x7 − x8, x4 − x7

2l − x1 − x2 − x4 − x5 − x6 − x7, l − x1 − x2 − x3

x1 − x4x2 − x1

sp(0)(1) su(6)(2)

(5.279)

where x8 − x9, x2 − x1 glue to fibers in the affine surface.
Folding (5.277), we obtain

x8 − x9, x7 − x8, x6 − x7, x5 − x6
x4 − x5x1 − x4x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) su(7)(2)

(5.280)

where x8 − x9, x2 − x1, l − x1 − x2 − x3 and2l − x1 − x2 − x4 − x5 − x6 − x7 glue to four
copies of fiber in the affine surface.
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By adding the curves in the previous configuration, we obtain the following two:

x8 − x9, x7 − x8, x4 − x7
x1 − x4x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) su(5)(2)

(5.281)

where x8 − x9, x2 − x1, l − x1 − x2 − x3 and 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to four
copies of fiber in the affine surface.

x8 − x9, x1 − x8
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x4 − x5 − x6 − x7

sp(0)(1) su(3)(2)

(5.282)

where x8 − x9, x2 − x1, l − x1 − x2 − x3 and 2l − x1 − x2 − x4 − x5 − x6 − x7 glue to four
copies of fiber in the affine surface.

Folding (5.253), we obtain

x1 − x4 x2 − x1, x3 − x2,

sp(0)(1) so(8)(3)

x4 − x5,

l − x1 − x2 − x3

x5 − x6,

l − x7 − x8 − x9 (5.283)

where x3−x2, x5−x6 and l−x7−x8−x9 glue to three copies of fiber in the affine surface.
By folding (5.190) and (5.187) we obtain:

x6 − x7, x5 − x6, x4 − x5, x1 − x4 l − x1 − x2 − x3
x2 − x1x3 − x2l − x3 − x8 − x9

sp(0)(1) e(2)6

(5.284)
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where l − x3 − x8 − x9 and x6 − x7 glue to two copies of fiber in the affine surface.

x6 − x7, x5 − x6, x4 − x5, x1 − x4 l − x1 − x2 − x3
x2 − x1x3 − x2l − x3 − x8 − x9

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

su(2)(1)sp(0)(1)e(2)6

(5.285)

where x8−x9, l−x3−x8−x9 and x6−x7 glue to fibers inside corresponding affine surfaces.
In a similar fashion, by folding other configurations and sometimes adding some of the

curves in them, we can obtain the following configurations:

x3 − x2, x2 − x1 x1 − x4 x4 − x5,
2l − x2 − x3 − x6 − x7 − x8 − x9 l − x1 − x2 − x3

x8 − x9

x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

x6 − x7

su(4)(1)sp(0)(1)so(8)(2)

(5.286)

where x8−x9, 2l−x2−x3−x6−x7−x8−x9 and x3−x2 glue to fibers inside corresponding
affine surfaces.

x3 − x2, x2 − x1 x1 − x4 x4 − x5,
2l − x2 − x3 − x6 − x7 − x8 − x9 l − x1 − x2 − x3

x8 − x9

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

x6 − x8

su(3)(1)sp(0)(1)so(8)(2)

(5.287)

where x8−x9, 2l−x2−x3−x6−x7−x8−x9 and x3−x2 glue to fibers inside corresponding
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affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9, l − x1 − x2 − x3

x6 − x7

x1 − x4 x2 − x1, x4 − x5

l − x3 − x6 − x7

su(4)(2)sp(0)(1)so(8)(1)

(5.288)

where x8 − x9, 2l − x1 − x2 − x6 − x7 − x8 − x9 and l − x1 − x2 − x3 glue to fibers inside
corresponding affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7

l − x3 − x6 − x7

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)so(8)(1)

(5.289)

where x8 − x9, 2l− x1 − x2 − x6 − x7 − x8 − x9, x2 − x1, x4 − x5 and l− x1 − x2 − x3 glue
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to fibers inside corresponding affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

2l − x1 − x2 − x6 − x7 − x8 − x9, l − x1 − x2 − x3

x6 − x7, l − x3 − x6 − x7

x1 − x4 x2 − x1, x4 − x5

su(4)(2)sp(0)(1)so(7)(1)

(5.290)

where x8 − x9, 2l − x1 − x2 − x6 − x7 − x8 − x9 and l − x1 − x2 − x3 glue to fibers inside
corresponding affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7, l − x3 − x6 − x7

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)so(7)(1)

(5.291)

where x8 − x9, 2l− x1 − x2 − x6 − x7 − x8 − x9, x2 − x1, x4 − x5 and l− x1 − x2 − x3 glue
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to fibers inside corresponding affine surfaces.

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

x1 − x4 x2 − x1, x4 − x5

2l − x1 − x2 − x6 − x7 − x8 − x9, l − x1 − x2 − x3

su(4)(2)sp(0)(1)g(1)2

(5.292)

where x8 − x9, 2l − x1 − x2 − x6 − x7 − x8 − x9 and l − x1 − x2 − x3 glue to fibers inside
corresponding affine surfaces.

x8 − x9 x7 − x8 x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)g(1)2

(5.293)

where x8 − x9, 2l− x1 − x2 − x6 − x7 − x8 − x9, x2 − x1, x4 − x5 and l− x1 − x2 − x3 glue
to fibers inside corresponding affine surfaces.

x6 − x7, x5 − x6 x4 − x5 x1 − x4 x2 − x1,
2l − x1 − x2 − x4 − x5 − x8 − x9 l − x1 − x2 − x3

3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8 x8 − x9

su(2)(1)sp(0)(1)so(10)(2)

(5.294)

where x8−x9 and 2l−x1−x2−x4−x5−x8−x9, x6−x7 glue to fibers inside corresponding
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affine surfaces.

x6 − x7, x5 − x6 x1 − x5 x2 − x1,
2l − x1 − x2 − x4 − x5 − x8 − x9 l − x1 − x2 − x3

3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8 x8 − x9

su(2)(1)sp(0)(1)so(8)(2)

(5.295)

where x8−x9, 2l−x1−x2−x4−x5−x6−x7 and x5−x9 glue to fibers inside corresponding
affine surfaces.

x8 − x9, x7 − x8 x6 − x7 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

x4 − x5 x1 − x4

2l − x1 − x2 − x6 − x7 − x8 − x9

x2 − x1, l − x1 − x2 − x3

so(7)(1)sp(0)(1)so(8)(2)

(5.296)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 and 2l − x1 − x2 − x6 − x7 − x8 − x9 glue
to fibers inside corresponding affine surfaces.

x8 − x9, x7 − x8 x6 − x7 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

2l − x1 − x2 − x6 − x7 − x8 − x9 x1 − x4 x4 − x5, l − x1 − x2 − x3, x2 − x1

g(1)2sp(0)(1)so(8)(2)

(5.297)

where x8 − x9, 2l − x1 − x2 − x4 − x5 − x6 − x7 and 2l − x1 − x2 − x6 − x7 − x8 − x9 glue
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to fibers inside corresponding affine surfaces.

x8 − x9, x7 − x8 x6 − x7 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

x4 − x5, x1 − x4 x2 − x1, l − x1 − x2 − x3

su(4)(2)sp(0)(1)so(8)(2)

2l − x1 − x2 − x6 − x7 − x8 − x9 (5.298)

where x8−x9, 2l−x1−x2−x4−x5−x6−x7, x4−x5 and 2l−x1−x2−x6−x7−x8−x9
glue to fibers inside corresponding affine surfaces.

x8 − x9, x7 − x8 x6 − x7 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)so(8)(2)

(5.299)

where 2l − x1 − x2 − x4 − x5 − x6 − x7, x8 − x9, x4 − x5, x2 − x1, l − x1 − x2 − x3 and
2l − x1 − x2 − x6 − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.

x8 − x9, x6 − x8 x2 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x2 − x3 − x6

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)su(4)(2)

(5.300)

where 2l − x1 − x2 − x4 − x5 − x6 − x7, x8 − x9, x4 − x5, x2 − x1, l − x1 − x2 − x3 and
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2l − x1 − x2 − x6 − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.

x4 − x5, x1 − x4
x2 − x1,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

x8 − x9, x6 − x8
x2 − x6,

l − x2 − x3 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7

su(3)(2)sp(0)(1)su(3)(2)

(5.301)

where 2l− x1− x2− x4− x5− x6− x7, x8− x9, x2− x6, l− x2− x3− x6, x4− x5, x2− x1,
l − x1 − x2 − x3 and 2l − x1 − x2 − x6 − x7 − x8 − x9 glue to fibers inside corresponding
affine surfaces.

l − x7 − x8 − x9 x1 − x4 x2 − x1, x4 − x5 x3 − x2, x5 − x6l − x1 − x2 − x3

x8 − x9, x7 − x8
l − x1 − x4 − x7,
l − x2 − x5 − x7,
l − x3 − x6 − x7

su(3)(2)sp(0)(1)f(1)4

(5.302)

where x8− x9, l− x1− x4− x7, l− x2− x5− x7, l− x3− x6− x7 and l− x7− x8− x9 glue
to fibers inside corresponding affine surfaces.

x1 − x4 x2 − x1, x3 − x2,

x4 − x5,

l − x1 − x2 − x3

x5 − x6,

l − x7 − x8 − x9

x8 − x9, x7 − x8
l − x1 − x4 − x7,
l − x2 − x5 − x7,
l − x3 − x6 − x7

su(3)(2)sp(0)(1)so(8)(3)

(5.303)
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where x8 − x9, l − x1 − x4 − x7, l − x2 − x5 − x7, l − x3 − x6 − x7, x3 − x2, x5 − x6, and
l − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.

x1 − x4 x2 − x1, x3 − x2,

x4 − x5,

l − x1 − x2 − x3

x5 − x6,

l − x7 − x8 − x9

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

su(3)(1)sp(0)(1)so(8)(3)

(5.304)

where x8 − x9, x3 − x2, x5 − x6, and l − x7 − x8 − x9 glue to fibers inside corresponding
affine surfaces.

x1 − x4 x2 − x1, x3 − x2,

x4 − x5,

l − x1 − x2 − x3

x5 − x6,

l − x7 − x8 − x9

x8 − x9 3l − x1 − x2 − x3 − x4 − x5 − x6 − x7 − 2x8

su(2)(1)sp(0)(1)so(8)(3)

(5.305)

where x8 − x9, x3 − x2, x5 − x6, and l − x7 − x8 − x9 glue to fibers inside corresponding
affine surfaces.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

x1 − x4, x2 − x1 x3 − x2,

su(4)(2)sp(0)(1)su(3)(1)

l − x2 − x3 − x5 2l − x2 − x3 − x6 − x7 − x8 − x9

(5.306)
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where x8−x9, x3−x2 and 2l−x2−x3−x6−x7−x8−x9 glue to fibers inside corresponding
affine surfaces.

x8 − x9 x6 − x7

3l − x1 − x2 − x3 − x4 − x5 − 2x6 − x7 − x8

x7 − x8

x1 − x4, x2 − x1
x3 − x2,

l − x2 − x3 − x5,
2l − x2 − x3 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)su(4)(1)

(5.307)
where x8 − x9, x3 − x2, x1 − x4, l− x2 − x3 − x5 and 2l− x2 − x3 − x6 − x7 − x8 − x9 glue
to fibers inside corresponding affine surfaces.

x8 − x9 x7 − x8

3l − x1 − x2 − x3 − x4 − x5 − x6 − 2x7 − x8

x1 − x4, x2 − x1
x3 − x2,

l − x2 − x3 − x5,
2l − x2 − x3 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)su(3)(1)

(5.308)
where x8 − x9, x3 − x2, x1 − x4, l− x2 − x3 − x5 and 2l− x2 − x3 − x6 − x7 − x8 − x9 glue
to fibers inside corresponding affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7 x2 − x6, l − x2 − x3 − x6

x4 − x5, x1 − x4 x2 − x1, l − x1 − x2 − x3
2l − x1 − x2 − x6 − x7 − x8 − x9

su(4)(2)sp(0)(1)so(9)(1)

(5.309)
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where x8−x9, x4−x5 and 2l−x1−x2−x6−x7−x8−x9 glue to fibers inside corresponding
affine surfaces.

x8 − x9 x7 − x8

2l − x1 − x2 − x4 − x5 − x6 − x7

x6 − x7 x2 − x6, l − x2 − x3 − x6

x2 − x1, x1 − x4
x4 − x5,

l − x1 − x2 − x3,
2l − x1 − x2 − x6 − x7 − x8 − x9

su(3)(2)sp(0)(1)so(9)(1)

(5.310)

where x8 − x9, x2 − x1, x4 − x5, l− x1 − x2 − x3 and 2l− x1 − x2 − x6 − x7 − x8 − x9 glue
to fibers inside corresponding affine surfaces.

Now, we are left with some possibilities that do not arise as foldings. For example, the
unfolding of e(2)6 ⊕ su(3)(1) is e(1)7 ⊕ su(3)(1) which cannot be embedded into e(1)8 . To obtain
the gluing rules for this case, we notice that folding of (5.190) has zero mutual intersection
with (5.196).

x6 − x7, x5 − x6, x4 − x5, x1 − x4

l − x1 − x2 − x3

x2 − x1x3 − x2l − x3 − x8 − x9

x8 − x9, x7 − x8
x6 − x7,

l − x3 − x6 − x7,
2l − x1 − x2 − x4 − x5 − x6 − x7

su(3)(2)sp(0)(1)e(2)6

(5.311)

where x8 − x9, x6 − x7, l − x3 − x6 − x7, 2l − x1 − x2 − x4 − x5 − x6 − x7, x6 − x7 and
l − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.
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In a similar fashion, by folding, adding curves or by guessing a correct configuration
of curves, we can obtain all the other following gluing rules:

x8 − x9, x7 − x8, x6 − x7, x5 − x6, x4 − x5
x2 − x3x1 − x2l − x1 − x4 − x5,

l − x1 − x3 − x6,
l − x1 − x2 − x7

sp(0)(1) su(9)(2)

x3 − x4

(5.312)

where x8 − x9, l− x1 − x4 − x5, l− x1 − x3 − x6 and l− x1 − x2 − x7 glue to four copies of
fiber in the affine surface.

x5 − x2, x2 − x1 x1 − x4 x4 − x5,
l − x2 − x3 − x5 2l − x1 − x2 − x6 − x7 − x8 − x9

x5 − x6, x6 − x7 x7 − x8 x8 − x9,
l − x3 − x5 − x6 2l − x1 − x2 − x4 − x5 − x6 − x7

so(8)(2)sp(0)(1)so(8)(2)

(5.313)

where x8−x9, 2l−x1−x2−x4−x5−x6−x7, x4−x5 and 2l−x1−x2−x6−x7−x8−x9
glue to fibers inside corresponding affine surfaces.

x4 − x5, x1 − x4 x2 − x1 x7 − x2 x5 − x7,
2l − x1 − x2 − x6 − x7 − x8 − x9 l − x3 − x5 − x7

x8 − x9, x6 − x8 x5 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7 l − x3 − x5 − x6

su(4)(2)sp(0)(1)so(10)(2)

(5.314)

where x8−x9, 2l−x1−x2−x4−x5−x6−x7, x4−x5 and 2l−x1−x2−x6−x7−x8−x9
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glue to fibers inside corresponding affine surfaces.

x4 − x5, x1 − x4 x2 − x1 x7 − x2 x5 − x7,
2l − x1 − x2 − x6 − x7 − x8 − x9 l − x3 − x5 − x7

x8 − x9, x6 − x8
x5 − x6,

l − x3 − x5 − x6,
2l − x1 − x2 − x4 − x5 − x6 − x7

su(3)(2)sp(0)(1)so(10)(2)

(5.315)

where x8 − x9, x5 − x6, l − x3 − x5 − x6, 2l − x1 − x2 − x4 − x5 − x6 − x7, x4 − x5 and
2l − x1 − x2 − x6 − x7 − x8 − x9 glue to fibers inside corresponding affine surfaces.

l − x1 − x2 − x4, x4 − x5, x5 − x9,
l − x2 − x3 − x6 l − x2 − x7 − x8

x1 − x4

x8 − x9, x7 − x8
l − x1 − x4 − x7,
l − x2 − x5 − x7,
l − x3 − x6 − x7

su(3)(2)sp(0)(1)su(6)(2)

x2 − x1

(5.316)

where x8−x9, l−x1−x4−x7, l−x2−x5−x7, l−x3−x6−x7, x5−x9 and l−x2−x7−x8
glue to fibers inside corresponding affine surfaces.

l − x1 − x2 − x4, x4 − x5,

x5 − x9

l − x2 − x3 − x6,

l − x2 − x7 − x8,

x1 − x4

x8 − x9, x7 − x8
l − x1 − x4 − x7,
l − x2 − x5 − x7,
l − x3 − x6 − x7

su(3)(2)sp(0)(1)su(5)(2)

x2 − x1

(5.317)
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where x8− x9, l− x1− x4− x7, l− x2− x5− x7, l− x3− x6− x7, x5− x9, l− x2− x3− x6,
l − x1 − x2 − x4 and l − x2 − x7 − x8 glue to fibers inside corresponding affine surfaces.

l − x1 − x2 − x3 x1 − x4, x4 − x7,

x2 − x5,

x3 − x6

x5 − x8,

x6 − x9

l − x1 − x4 − x7 x1 − x2, x2 − x3,

x4 − x5,

x7 − x8

x5 − x6,

x8 − x9

so(8)(3)sp(0)(1)so(8)(3)

(5.318)

where x8−x9, x5−x6, x2−x3, x6−x9, x5−x8 and x4−x7 glue to fibers inside corresponding
affine surfaces.

5.4.4 sp(0)(1) gluings: directed edges
Finally we consider cases in which one or both the neighbors of sp(0)(1) are connected to
it via directed edges. Our main constraint comes from (5.60) which states that the torus
fibers must be glued appropriately. Let us define C0,α be a −2 curve in dP9 which glues
to the affine surface for g(qα)

α in the gluing rule associated to an undirected edge, that is
gluing rule for

sp(0)(1) g(qα)
α (5.319)

If qα = 1, then there is a unique C0,α. If qα > 1, then there can be multiple such −2 curves.
In this case, we pick the curve containing the blowup x9 as C0,α. This uniquely fixes the
−2 curve C0,α. The reason for the prominence of the blowup x9 in this definition is that
the KK mass 1

R enters into the volume of x9, and the volume of any other curve in dP9
that does not involve x9 is independent of 1

R . We refer the reader to [4] for more details.
To obtain the gluing rules for

g(qα)
α sp(0)(1) g

(qγ)
γ

eγ

(5.320)

we start from the gluing rules for

g(qα)
α sp(0)(1) g

(qγ)
γ (5.321)

and simply replace the curve C0,γ in dP9 by the curve C0,γ + eγ (3l −
∑

xi). Similarly, to
obtain the gluing rules for

g(qα)
α sp(0)(1) g

(qγ)
γ

eγeα

(5.322)
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we start from the gluing rules for

g(qα)
α sp(0)(1) g

(qγ)
γ (5.323)

and simply replace the curves C0,γ and C0,α in dP9 by the curves C0,γ + eγ (3l −
∑

xi) and
C0,α + eα (3l −∑xi) respectively. It is trivial to see that this replacement satisfies (5.60).

Now we only need to consider gluing rules of the form

sp(0)(1) g
(qγ)
γ

eγ

(5.324)

since in the context of 6d SCFTs, it is not possible for any other node to attach to sp(0)(1)
in (5.324).

We first work out the following gluing rules by hand:

x8 − x9, x7 − x8,

2l − x1 − x2 − x4 − x5 − x6 − x7

x4 − x5,

x4 − x6,

sp(0)(1) so(8)(1)2

x2 − x1 x1 − x4

x5 − x7

x6 − x7

l − x1 − x2 − x3,

(5.325)

where x8−x9, x2−x1 glue to two copies of fiber in the affine surface. Indeed we can check
that twice the torus fiber for so(8)(1) is glued to 3l −∑xi.

By folding the above gluing rules, we obtain:

x4 − x6, x7 − x8,

2l − x1 − x2 − x4 − x5 − x6 − x7

x4 − x5,

x2 − x1,

sp(0)(1) so(7)(1)2

x5 − x7 x1 − x4

x8 − x9

x6 − x7,

l − x1 − x2 − x3,

(5.326)

where x8 − x9, x2 − x1, x6 − x7, x4 − x5 glue to four copies of fiber in the affine surface.
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Treating su(3)(1) as a subalgebra of so(7)(1), we can obtain the following gluing rules

x7 − x8,

2l − x1 − x2 − x4 − x5 − x6 − x7

x2 − x7,

sp(0)(1) su(3)(1)2

x1 − x4 x4 − x9

l − x1 − x2 − x3,

(5.327)

where x4 − x9, x2 − x7 glue to two copies of fiber in the affine surface.
Finally, folding (5.326), we obtain

x4 − x6,

x7 − x8,

2l − x1 − x2 − x4 − x5 − x6 − x7

x4 − x5,

x2 − x1,

sp(0)(1) su(3)(2)2

x5 − x7

x1 − x4

x8 − x9,

x6 − x7,

l − x1 − x2 − x3,

(5.328)

where x8 − x9, x2 − x1, x6 − x7, x4 − x5, x4 − x6, x5 − x7, l− x1 − x2 − x3, 2l− x1 − x2 −
x4 − x5 − x6 − x7 glue to eight copies of fiber in the affine surface.

6 Conclusions and future directions

In this paper, we have associated a genus-one fibered Calabi-Yau threefold to every 5d
KK theory, except a few cases for which we provide an algebraic description mimicking
the properties of genus-one fibered Calabi-Yau threefolds. Compactifying M-theory on the
threefold constructs the KK theory on its Coulomb branch. The threefold is presented as
a local neighborhood of a collection of surfaces intersecting with each other. We explicitly
identify all the surfaces and their intersections for every KK theory. Such a description of
the threefold allows an easy determination of the set of all compact holomorphic curves
(known as the Mori cone) inside the threefold along with their intersection numbers with
other cycles in the threefold. The Mori cone encodes crucial non-perturbative data needed
to perform RG flows on the KK theory which lead to 5d SCFTs. For the cases without a
completely geometric description we propose an analog of Mori cone using which one can
perform RG flows on these outlying KK theories as well.

According to a conjecture (see [2–4]) for which substantial evidence was provided
in [2], all the 5d SCFTs sit at the end points of such RG flows emanating from 5d KK
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theories. Thus, this work can be viewed as providing a preliminary step towards an explicit
classification of 5d SCFTs. In principle, the Coulomb branch data of all 5d SCFTs is
encoded in the properties of Calabi-Yau threefolds presented in this paper (see section 5).
Explicitly, such RG flows are performed by performing sequences of flops and blowdowns on
the Calabi-Yau threefolds associated to 5d KK theories. See [2–4] for a general discussion
and [10] for the explicit classification of 5d SCFTs up to rank three using the results of this
paper. Extending the classification to higher ranks, perhaps using a computer program,
would be of significant interest.

The Calabi-Yau threefold associated to a 5d KK theory is determined by combining the
data of the prepotential of the KK theory with certain geometric consistency conditions.
We provide a concrete proposal for the computation of this prepotential based on the
definition of the 5d KK theory in terms of a 6d SCFT on a circle and twisted by a discrete
global symmetry around the circle. See section 4 for more details.

Along the way, we provide a graphical classification scheme for 5d KK theories which
mimics the graphical classification scheme used to classify 6d SCFTs. In fact the graphs
associated to 5d KK theories generalize the graphs associated to 6d SCFTs just as Dynkin
graphs associated to general Lie algebras generalize the Dynkin graphs associated to simply
laced Lie algebras. We provide a full list of all the possible vertices and edges that can
appear in graphs associated to 5d KK theories. See section 3 for more details. We leave
an explicit classification of 5d KK theories to a future work. Such a classification can be
performed in a straightforward fashion starting from the explicit classification of 6d SCFTs
presented in [33, 36] and applying the folding operations discussed in section 3.

A noteworthy point deserving a special mention is that our work applies uniformly to
all 6d SCFTs irrespective of whether they are constructed in the frozen phase of F-theory
or in the unfrozen phase of F-theory. In other words, the dictionary relating M-theory and
5d KK theories applies uniformly to all 5d KK theories irrespective of the F-theory origin
of the associated 6d SCFT. This is in stark contrast with the case of 6d SCFTs for which
the dictionary relating F-theory and the resulting 6d theory is modified depending on the
presence (called the frozen phase) or absence (called the unfrozen phase) of O7+ planes in
the base of the elliptic Calabi-Yau threefold used for compactification of F-theory. See [32]
for more details.

In the future, it will be interesting to use the geometries presented in this paper
to derive 5d gauge theory descriptions associated to 6d SCFTs compactified on a circle
(possibly with a twist). This can be done by performing local S-dualities on the geometries
associated to 5d KK theories. See the recent work [54] for more details on the methodology.
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A Geometric background

In this section, we recall some background useful for this paper. We refer the reader to
section 2 of [4] for a more detailed background on various points discussed below in this
appendix.

A.1 Hirzebruch surfaces
A Hirzebruch surface is a P1 fibration over P1. We denote a Hirzebruch surface with a
degree −n fibration as Fn. We refer to the fiber P1 as f and the base P1 as e. Their
intersection numbers are

e2 = −n (A.1)
f2 = 0 (A.2)

e · f = 1 (A.3)

Another very important curve in Fn is

h := e+ nf (A.4)

whose genus is zero and intersection numbers are

h2 = n (A.5)
h · e = 0 (A.6)
h · f = 1 (A.7)

Note that e = h for F0. The set of holomorphic curves, often referred to as Mori cone, for
Fn with n ≥ 0 is generated by e and f . For Fn with n ≤ 0, the Mori cone is generated by
h and f .

The canonical class K of Fn is an antiholomorphic curve which can be determined by
the virtue of adjunction formula which states that for a surface S and a curve C inside S,
the canonical class KS of S satisfies

(KS + C) · C = 2g(C)− 2 (A.8)

where g(C) is the genus of C. Demanding that K satisfies (A.8) for e, f determines it to be

K = −(e+ h+ 2f) (A.9)
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from which we can compute that
K2 = 8 (A.10)

Notice that Fn and F−n are isomorphic to each other via the map

e↔ h (A.11)
f ↔ f (A.12)
h↔ e (A.13)

Thus, we will restrict our attention to Hirzebruch surfaces with n ≥ 0 in what follows.
However, at various points in the main body of the paper we find it useful to include
Hirzebruch surfaces with negative degrees since they allow us to express answers in a more
uniform way.

We also deal with surfaces which arise by performing b number of blowups on Fn.
The blowups will often be non-generic. We can obtain different surfaces by performing b

blowups in different fashions on Fn. In this paper, we refer to all the different surfaces
arising via b blowups of Fn as Fb

n. The curves inside Fb
n can be described by adding the

curves xi with i = 1, · · · , b which are the exceptional divisors created by the blowups. We
will use the convention that the total transforms21 of the curves e, f and h are denoted by
the same names e, f and h in Fb

n. Thus, the intersection numbers between e, f and h are
those mentioned above, and their intersections with xi are

xi · xj = −δij (A.14)
e · xi = 0 (A.15)
f · xi = 0 (A.16)
h · xi = 0 (A.17)

The blowup procedure creates curves that can be written as

αe+ βf −
∑

γixi (A.18)

with α,β, γi ≥ 0. The important point is that the blowups xi can appear with negative
sign.

Again, using the adjunction formula (A.8) we can find the canonical classK for Fb
n to be

K = −(e+ h+ 2f) +
∑

xi (A.19)

from which we compute
K2 = 8− b (A.20)

An important isomorphism exists between F1
0 and F1

1 with the blowup on both surfaces
being performed at a generic point. In fact, a single blowup of F0 is always generic. The

21If B : S̃ → S is a blowup of a surface S, then the total transform of a curve C in S is the curve B−1(C)
in S̃.
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map from F1
1 to F1

0 is
e→ e− x (A.21)

f − x→ x (A.22)
x→ f − x (A.23)

It is easy to see that the above isomorphism only works when the blowups are generic. For,
the non-generic one point blowup of F1 contains the curve e − x, which would be sent to
e − f inside F1

0. But e − f is not a holomorphic curve in F1
0. The above isomorphism is

responsible for the equivalence of geometries corresponding to

1
sp(n)(1)(n+1)π

(A.24)
and

1
sp(n)(1)nπ

(A.25)
whenever the theta angle is physically irrelevant. In the situations where theta angle
is physically relevant, the above isomorphism is broken by the presence of neighboring
surfaces.

To differentiate between the different surfaces Fb
n for fixed n and b, we have to track the

data of their Mori cone. One important point is that the gluing curves inside the surfaces
must be the generators of Mori cone. In the paper, we find many instances in which a surface
Fb
n appearing in different contexts carries different kinds of gluing curves, thus demonstrat-

ing that the two Fb
n are different surfaces. For example, the geometry with ν = 0 for

2
su(n+ 4)(1)

(A.26)
and the geometry with ν = 0 for

1
sp(n)(1)(n+1)π

(A.27)
both contain a surface F2n+8

0 with different gluing curves e −
∑

xi and 2e + f −
∑

xi
respectively. Thus the F2n+8

0 appearing in the two theories are different blowups of F0.
The final point we want to address is that F2 and F0 are same up to decoupled states.

This can be seen by noticing that the Mori cone of latter embeds into the Mori cone of
former. This embedding F0 → F2 is

e→ e+ f (A.28)
f → f (A.29)

This means that F2 equals F0 plus some decoupled states. Decoupling these states corre-
sponds to performing a complex structure deformation F2 → F0. When F0 and F2 carry
blowups, this conclusion might be changed or unchanged depending on how the blowups
are done. See the discussion after (B.17) for an example where this conclusion still holds
true even in the presence of blowups.

– 137 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

A.2 Del Pezzo surfaces

The discussion of del Pezzo surfaces starts with the discussion of complex projective plane
P2 which contains a single curve l whose genus is zero and intersection number is

l2 = 1 (A.30)

(A.8) determines the canonical class to be

K = −3l (A.31)

from which we compute
K2 = 9 (A.32)

Performing n blowups on P2 at generic locations leads to the del Pezzo surface dPn.
It can be described in terms of curve l and xi with intersection numbers

xi · xj = −δij (A.33)
l · xi = 0 (A.34)

Again, the blowups create new holomorphic curves which can be written as

αl −
∑

γixi (A.35)

with α, γi ≥ 0. In the paper, we abuse the notation and call a non-generic n point blowup
of P2 as dPn too. The canonical class for dPn is

K = −3l +
∑

xi (A.36)

with
K2 = 9− n (A.37)

del Pezzo surfaces and Hirzebruch surfaces are related to each other by virtue of an iso-
morphism dP1 → F1 which acts as

x→ e (A.38)
l − x→ f (A.39)

l→ h (A.40)

A one point blowup of P2 is always generic and thus there is a unique dP1 which appears
in the above isomorphism.

A special example of del Pezzo surfaces for us in this paper will be dP9 which is the
geometry associated to

1
sp(0)(1)

(A.41)

The curve
F = 3l −

∑
xi (A.42)
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has the properties that
F 2 = 0 (A.43)

and
K · F = 0 (A.44)

Thus, F is a fiber of genus one, or in other words a torus fiber inside dP9.
dPn for n ≥ 3 admits the following basic automorphism. We first choose three distinct

blowups xi, xj and xk, and then implement

xi → l − xj − xk (A.45)
xj → l − xi − xk (A.46)
xk → l − xi − xj (A.47)
l→ 2l − xi − xj − xk (A.48)

Combining this automorphism with permutations of blowups, we can obtain more general
automorphisms of dPn (with n ≥ 3) which can be decomposed as a sequence comprising of
above mentioned basic automorphisms and permutations of blowups. Notice that for dP9,
any such automorphism leaves the torus fiber (A.42) invariant.

A.3 Arithmetic genus for curves in a self-glued surface
When a surface has no self-gluings, then the arithmetic genus22 of curves living inside the
surface can be computed using the adjunction formula (A.8).

However, when the surface has self-gluings, the genus of the curve is modified. For
example, consider gluing the exceptional curves x and y in a generic two point blowup of
F1. The curve h−x− y (which is a rational curve before gluing) looks like an elliptic fiber
with nodal singularity after the gluing, so its arithmetic genus should be one instead of zero,
which is what would be suggested by (A.8). This example suggests that the intersection
numbers of a curve C with the curves C1 and C2 participating in a self-gluing should be
used to modify (A.8) in order to obtain the correct arithmetic genus. However, not all such
intersection numbers participate in such a modification. To see this, consider the curve
f − x in the above example. This curve remains rational even after gluing. Thus, even
though it intersects x, its genus is correctly captured by (A.8).

The examples of h−x− y and f −x above suggest that the genus of a curve C should
only be modified whenever an intersection with C1 has a partner intersection with C2.
Thus our proposal for the computation of genus of an arbitrary curve C is as follows: let
n1 and n2 be the intersections of C with C1 and C2 respectively, and let n = min(n1, n2).
Then, our proposal for computation of genus is

2g(C)− 2 = (KS + C) · C + 2n (A.49)

(A.49) allows certain curves to have a non-negative genus even though they did not have
a non-negative genus before self-gluing. For example, consider

22Throughout this paper, we never use the geometric genus. Whenever the word “genus” appears in this
paper, it always refers to arithmetic genus.
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• A surface F2
m with x glued to y. The curve e− x− 2y has g = 0 according to (A.49)

while it has g = −1 according to (A.8) which is the formula we would use in the
absence of self-gluing. e−x−2y appears as a gluing curve in some of our geometries,
for example (5.107), (5.108), (5.156) and (5.158).

• A surface F2
0 with e−x glued to e−y. The curve 2f−x has g = 0 according to (A.49)

while it has g = −1 according to (A.8). 2f−x appears as a gluing curve in the gluing
rules for

2
su(1)(1)

2
su(1)(1)

2 (A.50)

B Exceptional cases

In this appendix we study some of the exceptional cases where the methods used in the
paper are not applicable in a straightforward manner.

B.1 Geometries for non-gauge theoretic nodes

The following non-gauge theoretic nodes arise in our analysis

1
sp(0)(1)

(B.1)

2
su(1)(1)

(B.2)

2
su(1)(1)

(B.3)

According to our proposal the prepotential 6F̃ for each case must be zero. So the geometry
cannot be directly guessed from the prepotential. One can try to take corresponding limits
of the geometries for the following gauge theoretic nodes

1
sp(n)(1)

(B.4)

2
su(n)(1)

(B.5)

2
su(n)(1)

(B.6)
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But this procedure is unreliable. For example, taking the limit of the geometry (5.112)
would suggest that there should exist a phase of (B.2) governed by the geometry

01+1
0

e-x-y

e
(B.7)

However, even though the self-gluing here satisfies the Calabi-Yau condition (5.18), it does
not satisfy the condition (5.17). So, this is not a consistent geometry, and there should be
no such phase for (B.2).

Fortunately, a gauge theory description of the KK theories (B.1), (B.2) and (B.3) is
known, which allows us to reliably compute the corresponding geometries. In terms of the
language used throughout this paper, this gauge theory description is a “non-canonical”
gauge theory description of these KK theories, since it does not correspond to the 6d gauge
theory description on the tensor branch of the corresponding 6d SCFT.

To start with, it is known that (B.1) can be described by the gauge theory su(2) with
eight fundamental hypers. We can compute the prepotential via

6F = 1
2




∑

r

|r · φ|3 −
∑

f

∑

w(Rf )
|w(Rf ) · φ +mf |3



 (B.8)

and convert it into a geometry as described in section 5.1. When all mass parameters are
turned off, we obtain the geometry

081 (B.9)

which equals dP9. See the discussion that follows (5.102).
Next, it is known that (B.2) can be described by the gauge theory sp(1) with an adjoint

hyper and θ = 0. Moreover, it is known that upon integrating out the adjoint matter of
sp(n), the theta angle remains unchanged. We know that the geometry corresponding to
pure sp(1) with θ = 0 is

00 (B.10)

where we adopt the convention that f is the W-boson of sp(1) and e is an instanton. So, we
just have to integrate the adjoint matter into (B.10) to figure out the geometry for (B.2).
We can write the weights of the adjoint as w1 = (2), w2 = (0) and w3 = (−2) in terms of
their Dynkin coefficient. When mass parameter for adjoint is very large, then according
to the discussion in section 5.1, we should be able to find a −1 curve C living inside a
non-compact surface N such that C intersects S0 = F0 transversely at two points. We can
consistently choose the gluing curve for N inside S0 to be f since N ·f must be zero as the
mass of the W-boson must be independent of the mass parameter associated to N which is
the mass parameter associated to adjoint hyper. As we bring the mass of adjoint to zero,
C undergoes a flop transition. If a −1 curve living outside a surface S intersects S at two

– 141 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
1

points transversely, then flopping the −1 curve leads to the emergence of self-gluing on the
surface S. Thus, the geometry for (B.2) is

01+1
0

x

y
(B.11)

with the gluing curve to N being the genus one curve f−x−y. We can write the geometry
in an isomorphic way by first exchanging e with f , which keeps the description (B.11) while
changing the gluing curve to N as e − x − y. Now we perform the isomorphism F2

0 → F2
2

such that

e− x− y → e (B.12)
f − x→ x (B.13)
f − y → y (B.14)

x→ f − x (B.15)
y → f − y (B.16)

which changes (B.11) to

01+1
2

f -x

f -y
(B.17)

with the gluing curve to N being e. As discussed at the end of appendix A.1, this geometry
gives rise to some decoupled states which can be decoupled by doing a complex structure
deformation to

01+1
0

f -x

f -y
(B.18)

Performing an exchange of e and f again leads to the geometry

01+1
0

e-x

e-y
(B.19)

which is what is displayed in (5.113) because the fiber f becomes an elliptic fiber in this
frame (with a nodal singularity). This is as we would expect from the fact that (B.2)
arises from an untwisted unfrozen 6d SCFT and hence it must be possible to feed the
geometry (B.19) into F-theory, which requires the presence of an elliptic fibration. The
gluing curves for the non-compact surface responsible for mass parameter of adjoint are x

and y in this frame.
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Finally, it is known that (B.3) can be described by the gauge theory sp(1) with an
adjoint hyper and θ = π. The geometry corresponding to pure sp(1) with θ = π is

01 (B.20)

In a similar fashion as above, integrating in the adjoint leads to

01+1
1

x

y
(B.21)

which is indeed the “geometry” presented in (5.160). We write the word geometry in quo-
tation marks because it is only to be understood as an algebraic description mimicking the
properties of the geometric description available for other KK theories. See the discussion
after equation (5.160) for more details.

B.2 Gluing rules between non-gauge theoretic nodes

As we combine non-gauge theoretic nodes via edges, the prepotential 6F̃ still remains zero.
Thus, another method to compute the gluing rules presented in the main body of this
paper is desirable. The goal of this section is to provide this alternative derivation.

Gluing rules for 2
su(1)(1)

1
sp(0)(1)

: it is known that this KK theory is equivalent to
a 5d sp(2) gauge theory with eight fundamentals and an antisymmetric. The theta angle
for sp(2) is irrelevant due to the presence of fundamentals. So we can start with geometry
corresponding to any theta angle for pure sp(2) and then integrate in the matter. The
geometry with theta angle zero is

16 21e 2h
(B.22)

where we have labeled the surfaces according to the labeling of the corresponding simple
co-roots of sp(2). Notice that this is different than a similar labeling of the surfaces in
terms of simple co-roots of affine algebras used in the main body of the text. The weights
for fundamental are

(1, 0)+

(−1, 1)+

(1,−1)+

(−1, 0)+

where we have arranged the weights in a spindle shape according to their level and the
superscripts on top of the weights denotes the sign of virtual volume of the weights in
the totally integrated out phase (B.22). The last weight (−1, 0) can be recognized as a
−1 curve living in a non-compact surface and intersecting S1 once. Since there are eight
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fundamentals, there are eight copies of the above weight system. Making the virtual volume
of (−1, 0) negative for all eight copies leads to the phase

186 21e 2h
(B.23)

The weight system in this phase can be written as eight copies of

(1, 0)+

(−1, 1)+

(1,−1)+

(−1, 0)−

The blowups xi correspond to eight copies of the weight (−1, 0). Indeed, the volume of xi
is φ1 which is negative of the virtual volume of the weight (−1, 0) in this phase. The other
weights are obtained by adding the fibers fi of the two surfaces Si. For example, f1 − xi
are eight copies of the weight (1,−1) and indeed vol(f1− xi) = φ1− φ2 which matches the
virtual volume of (1,−1). Now making the virtual volume of all the eight copies of the
weight (1,−1) negative corresponds to flopping the curves f1−xi in (B.23) where f1 is the
fiber of S1. The resulting geometry is

12 281
h 2h-

∑
xi

(B.24)

with the weight system being eight copies of

(1, 0)+

(−1, 1)+

(1,−1)−

(−1, 0)−

The curves xi in the phase (B.24) correspond to eight copies of the weight (1,−1). Notice
that we can take mass parameter for all eight fundamentals to be zero in this phase since
weights which are negatives of each other have virtual volumes of opposite signs. Thus, we
have completely integrated in the eight fundamentals. Now we move onto the integration
of antisymmetric.

The weight system for antisymmetric of sp(2) in phase (B.24) is

(0, 1)+

(2,−1)+

(0, 0)+

(−2, 1)+

(0,−1)+
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Flipping the sign for (0,−1), we obtain

12 28+1
1

e 2h-
∑

xi

(B.25)

with the ninth blowup y on S2 not participating in the gluing curve for S1 inside S2. Now,
flipping the sign for (−2, 1) corresponds to flopping f2 − y. Since it intersects the gluing
curve 2h−∑xi twice, this results in a self-gluing on S1

11+1
2 281

h-x-y 2h+f -
∑

xi

x

y (B.26)

The reader can check that both (5.17) and (5.18) are satisfied here. The weight system of
antisymmetric corresponding to this phase is

(0, 1)+

(2,−1)+

(0, 0)+

(−2, 1)−

(0,−1)−

with x ∼ y being identified with the weight (−2, 1). After performing an isomorphism on
S1 can be rewritten as

11+1
0 281

f 2h+f -
∑

xi

e-x

e-y (B.27)

leading to the same gluing rules as those presented in the main text.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

: it is known that this KK theory is equivalent
to a 5d su(3) gauge theory with an adjoint and Chern-Simons level zero. The geometry for
su(3) with CS level zero is

11 21
e e

(B.28)

The weight system for adjoint in this phase is

(1, 1)+

(−1, 2)+ (2,−1)+

(0, 0)+ (0, 0)+

(1,−2)+ (−2, 1)+

(−1,−1)+
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The weight (−1,−1) can be identified with a −1 curve living in a non-compact surface and
intersecting both S1 and S2 at one point each. Flipping the sign of this weight leads to the
appearance of a blowup on both S1 and S2

111 211
e,x e,x

2 (B.29)

Notice that both the blowups are glued to each other. This can be understood as a
consequence of the fact that they both correspond to the same weight i.e. (−1,−1)−, but
since there is a single such weight, these two curves must be identified with each other. In
this flop frame, the weight system is

(1, 1)+

(−1, 2)+ (2,−1)+

(0, 0)+ (0, 0)+

(1,−2)+ (−2, 1)+

(−1,−1)−

and the curves corresponding (−1, 2)+ and (−2, 1)+ can be identified as (f − x)S1 and
(f − x)S2 respectively. Flopping both of these, flips the sign of both the weights (−1, 2)
and (−2, 1) and leads to the geometry

11+1
0 21+1

0
e-y, f -x e-y, f -x

x

y

x

y

2

(B.30)

which after performing an isomorphism of both the surfaces can be written as

11+1
0 21+1

0
f -x,x f -x,x

e-x

e-y

e-x

e-y
2

(B.31)

leading to the same gluing rules as those presented in the main text.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

2 : it is known that this KK theory is equivalent
to a 5d sp(2) gauge theory with an adjoint and theta angle zero. The geometry for pure
sp(2) with zero theta angle is known to be

16 21
e 2h

(B.32)
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The weight system for adjoint in this phase is

(2, 0)+

(0, 1)+

(−2, 2)+ (2,−1)+

(0, 0)+ (0, 0)+

(2,−2)+ (−2, 1)+

(0,−1)+

(−2, 0)+

Flipping the sign for (−2, 0) leads to the geometry

11+1
6 21e 2h

x

y (B.33)

In this phase, the weight (0,−1)+ can be identified with curves f1 − x and f1 − y, along
with a −1 curve z living in a non-compact surface and intersecting S2 at one point. z is
glued to f1 − x but not to f1 − y. Since if it glues also to f1 − y, then it would mean that
f1−x is glued to f1−y resulting in another self-gluing of S1, namely f1−x ∼ f1−y. After
this self-gluing, the volumes of f1− x and f1− y will be φ1− φ2 leading to a contradiction
with our starting step that their volume is −φ2.

Now, to flip the sign of the weight (0,−1), we have to flop f1 − x ∼ z which automat-
ically flops f1 − y since its volume is same. The flop of f1 − x creates a new blowup on S1
that we call x′. Similarly, the flop of f1 − y creates a new blowup on S1 that we call y′.
Moreover the flop of z creates a blowup on S2 that we call z′.

After the flop S1 = F2
4 with f1 − x′ glued to f1 − y′ and S2 = F1

2. The total gluing
curve for S2 in S1 is e1 + x′ + y′, and the total gluing curve for S1 in S2 is 2h. The gluing
f1 − x ∼ z transforms into the gluing x′ ∼ z′ in the new frame. Thus, the total gluing
curve splits into two gluing curves:

e1 + y′ ∼ 2h− z′ (B.34)
x′ ∼ z′ (B.35)

The reader can check that the curves involved on both sides in both of these gluings have
same genus, and moreover (5.17) and (5.18) are satisfied for both gluings. Notice that if
we would have tried to split the total gluing curve into three gluing curves e1, x′, y′ glued
respectively to 2h − 2z′, z′, z′, we would have run into two problems. First is the same
problem that we noted before the flop was performed, that this would imply a second self
gluing x′ ∼ y′ of S1 and the weight system won’t match with the system of curves in the
geometry anymore. Second, the genus of 2h2 − 2z′ is −1 and the genus of e1 is +1, so the
first gluing curve wouldn’t make sense.
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Thus at this step of the integration process, the geometry is

11+1
4 211

e+y, x 2h-z, z
f -x

f -y

2

(B.36)

where we have dropped the primes on the blowups. The corresponding weight system is

(2, 0)+

(0, 1)+

(−2, 2)+ (2,−1)+

(0, 0)+ (0, 0)+

(2,−2)+ (−2, 1)+

(0,−1)−

(−2, 0)−

By performing an isomorphism, we can write the geometry as

11+1
2 211

e+f -x-2y, f -x 2h-z, z
x

y

2

(B.37)

The weight (2,−2)+ corresponds to the curve x ∼ y, and the weight (−2, 1)+ corresponds
to the curve f2 − z. Upon flopping them, we obtain the geometry with adjoint matter
completely integrated in

11+1
2 21+1

0
e+f -y, f -x 2e+f -x-2y, f -x

x

y

x

y

2

(B.38)

After an isomorphism, we obtain

11+1
0 21+1

0
f -x, x 2f -x, x

e-x

e-y

e-x

e-y
2

(B.39)

which shows that gluing rules are precisely those quoted in the main text.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

: it is known that this KK theory is equivalent

to a 5d sp(2) gauge theory with an adjoint and theta angle π. Thus, the analysis for this
case is similar to that of the last case which was

2
su(1)(1)

2
su(1)(1)

2 (B.40)
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since only the theta angle is different for these two cases. Following similar steps as above,
the final “geometry”23 analogous to (B.38) is found to be

11+1
2 21+1

1
e+f -y, f -x 2h-x-2y, f -x

x

y

x

y

2

(B.41)

which after an isomorphism becomes

11+1
0 21+1

1
f -x, x 2h-x-2y, f -x

e-x

e-y

x

y

2

(B.42)

which matches the gluing rules claimed in the text.

B.3 Theta angle for sp(n)

Notice that there are two inequivalent geometries which give rise to a 5d pure sp(n) gauge
theory:

12n+2 · · · (n− 2)8 n0(n− 1)6e 2e+fehh e

(B.43)

and
12n+2 · · · (n− 2)8 n1(n− 1)6e 2hehh e

(B.44)

These two geometries correspond to two different possible values of theta angle. The only
difference between (B.43) and (B.44) is whether Sn = F0 or Sn = F1. It is well-known that
(see for instance [2]) for sp(1), θ = 0 has S1 = F0 and θ = π has S1 = F1, while for sp(2),
θ = 0 has S2 = F1 and θ = π has S2 = F0.

We claim that for higher n, the same pattern continues to hold and the theta angle
corresponding to F0 (or F1) changes by π (mod 2π) every time one increases the rank n by
one unit. To see this, one can start from the statement [55] that the KK theory

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

(B.45)

with a total of n nodes is equivalent to a 5d sp(n) gauge theory with an adjoint hyper and
θ = π. We can build the geometry corresponding to (B.45) by using the data presented
in this paper and derived in appendix (B.2). Now the key point is that integrating out
the adjoint matter does not change the theta angle. So, we can simply integrate out the
adjoint matter from the geometry corresponding to (B.45) to land on to pure sp(n) theory
with θ = π. This process is inverse of the process of integrating in of matter discussed

23We remind the reader that it should only be viewed as an algebraic description since the KK theory
involves the non-geometric node.
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in appendices (B.1) and (B.2) and corresponds to making the virtual volumes of all the
weights of adjoint of sp(n) to have the same sign. Once this is done, it is found that the
geometry for θ = π is (B.43) whenever n is even, and the geometry (B.44) whenever n

is odd. From this we conclude that the geometry (B.43) corresponds to θ = θ0 and the
geometry (B.44) corresponds to θ = θ1 where

θ1 = nπ (mod 2π) (B.46)
θ0 = θ1 + π (mod 2π) (B.47)

C A concrete non-trivial check of our proposal

We devote this section to a concrete and non-trivial check of our proposal. It is known
that [24] the KK theory

2
su(2)(1)

2
su(2)(1)

2 (C.1)
is equivalent to the 5d gauge theory with gauge algebra su(2)⊕ su(4) with a hyper trans-
forming in F⊗Λ2. More precisely, the gauge-theoretic phase diagram for the su(2)⊕ su(4)
embeds into the phase diagram for the KK theory (C.1). In this section we will show this
explicitly.

Let us start with the geometry assigned to (C.1) in the paper with ν chosen to be zero
for both su(2)(1):

040 0′4
0

12 1′
2

e, e-
∑

xi

e, h

f -x1, x2-x3, x4

f ,f

x1-x2,

f

x1-x2

f -x1, f , x2

x3-x4

2 2

3

2

e, e-
∑

xi

e, h

(C.2)

where the surfaces S0 and S1 correspond to the left su(2)(1) in (C.1), and the surfaces S′
0

and S′
1 correspond to the right su(2)(1) in (C.1). As visible in the above diagram, x4 in S0

is glued to x2 in S′
0. Flopping this curve, we obtain

030 0′3
0

112 1′1
2

e, e-
∑

xi

e, h-x

f -x1, x2-x3

f ,f -x

x1-x2,

f -x

x1

f -x1, f

x3

2 2

2

2

e, e-
∑

xi

e, h-x

x x (C.3)
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Now flopping f − x in S1 which is glued to x1 in S′
0, we obtain

03+1
0 0′2

0

11 1′2
2

e-y, e-
∑

xi

e, h

f -x1-y, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, y

2 2

2

3

e, e-
∑

xi

e, h-
∑

xi

f x1-x2

x2

(C.4)

which after performing an isomorphism on S0 can be written as

041 0′2
0

11 1′2
2

e, h-
∑

xi

e, h

x4-x1, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, f -x4

2 2

2

3

e, e-
∑

xi

e, h-
∑

xi

f x1-x2

x2

(C.5)

Now, flopping the e curves inside S0 and S1 (which are glued to each other), we obtain

04 0′2
0

1 1′2+1
2

l-
∑

xi

l

x4-x1, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, l-x4

2

2

3

e, e-
∑

xi

e, h-
∑

xi

l x1-x2-y

x2-y

(C.6)

where a surface without a subscript denotes that the surface is a del Pezzo surface rather
than a Hirzebruch surface. That is, S0 = dP4 and S1 = P2 = dP0. Let us use the blowup
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x4 on S0 to write S0 in terms of the Hirzebruch surface F1

031 0′2
0

1 1′2+1
2

f -
∑

xi

l

e-x1, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, f

2

2

3

e, e-
∑

xi

e, h-
∑

xi

l x1-x2-y

x2-y

(C.7)

Flopping x3 in S0 glued to f − x1 in S′
1 gives rise to

021 0′2+1
0

11 1′1+1
1

f -
∑

xi

l-x

e-x1, x2

x1-x2,

f ,f -y

f

2

2

2

e-y, e-
∑

xi

e, h-x

l-x f -x-y

f ,x-y
x

y

(C.8)

We use x in S1 to write S1 in terms of Hirzebruch surface F1

021 0′2+1
0

11 1′1+1
1

f -
∑

xi

f

e-x1, x2

x1-x2,

f ,f -y

f

2

2

2

e-y, e-
∑

xi

e, h-x

f f -x-y

f ,x-y
e

y

(C.9)

Flop x2 in S0 glued to f − y in S′
0 to obtain

011 0′2
1

111 1′2+1
1

f -x

f -x

e-x

x, f

f

2
2

e, h-
∑

xi

e, h-
∑

xi

f , x f -x1-y, x2

f -x2,

e-x

f

2

x1-y

(C.10)
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Now flopping f − x in S0 glued to f − x in S1, we obtain

02 0′2
1

12 1′2+2
1

e

f , f

f

2
2

e, h-
∑

xi

e, h-
∑

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

f

2

x1-y1

(C.11)

Flopping f − x2 in S′
0 we obtain

02 0′1
0

12 1′2+2+1
1

e

f , f

f

2
2

e, e-x

e-z, h-
∑

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

f

2

x1-y1

(C.12)

Now flopping x in S′
0 we get

02 0′
0

12 1′3+2+1
1

e

f , f

f

2
2

e, e

e-z, h-
∑

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

f

2

x1-y1

(C.13)

Performing the automorphism on S′
0 that exchanges e and f , we obtain

02 0′
0

12 1′3+2+1
1

e

f , f

e

2
2

f , f

e-z, h-
∑

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

e

2

x1-y1

(C.14)
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Now let us write S′
1 as a del Pezzo surface. This rewrites the e curve as a blowup which

we denote by w

02 0′
0

12 1′3+2+1+1

e

f , f

e

2
2

f , f

w-z, l-
∑

xi

f , f l-w-x1-y1, x2-y2

l-w-x2-y2,

e

e

2

x1-y1

(C.15)
We can now perform a basic automorphism (of del Pezzo surfaces) on S′

1 involving the
three blowups x1, x2 and y1 to obtain

02 0′
0

12 1′3+2+1+1

e

f , f

e

2
2

f , f

w-z, y1-x3

f , f x2-w, l-x1-y1-y2

l-w-x2-y2,

e

e

2

x1-y1

(C.16)

Converting S′
1 back into F1 using the blowup y2, we obtain

02 0′
0

12 1′3+1+1+1
1

e

f , f

e

2
2

f , f

w-z, y-x3

f , f x2-w, f -x1-y

f -w-x2,

e

e

2

x1-y

(C.17)

This is the final form of the geometry that we wanted to obtain.
It is clear that S0, S′

0 and S1 describe an su(4) and S′
1 describes an su(2) in (C.17).

This can be checked by intersecting the fibers of the corresponding Hirzebruch surfaces
with these surfaces. The intersection matrix yields the Cartan matrix for su(4) ⊕ su(2).
Now, let us show that the configuration of blowups indeed describes Λ2⊗F of su(4)⊕su(2).
For this we relabel the surfaces as

S0 → S1 (C.18)
S′
0 → S2 (C.19)

S1 → S3 (C.20)
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thus rewriting the geometry as

12 20

32 1′3+1+1+1
1

e

f , f

e

2
2

f , f

w-z, y-x3

f , f x2-w, f -x1-y

f -w-x2,

e

e

2

x1-y

(C.21)

The weight system for Λ2 ⊗ F can be written as

(0, 1, 0|1)
(1,−1, 1|1) (0, 1, 0|− 1)

(−1, 0, 1|1) (1, 0,−1|1) (1,−1, 1|− 1)
(−1, 1,−1|1) (−1, 0, 1|− 1) (1, 0,−1|− 1)

(0,−1, 0|1) (−1, 1,−1|− 1)
(0,−1, 0|− 1)

where the three entries on the left hand side of slash denote the weights with respect to
su(4) comprised by S1, S2 and S3, and the entry on the right hand side of slash denotes
the weight with respect to su(2) comprised by S′

1.
From the geometry (C.21) we see that the holomorphic curves

vol(x1) = (1, 0,−1|1) (C.22)
vol(x2) = (−1, 0, 1|1) (C.23)
vol(x3) = (0,−1, 0|1) (C.24)
vol(y) = (−1, 1,−1|1) (C.25)

vol(f − z) = (0, 1, 0|1) (C.26)
vol(f − w) = (1,−1, 1|1) (C.27)

match weights of the form (x, y, z|1), and the antiholomorphic curves x1 − f, x2 − f, x3 −
f, y − f,−z,−w match weights of the form (x, y, z| − 1), where f denotes the fiber of
Hirzebruch surface S′

1 = F6
1. Thus we have reproduced the full weight system for Λ2 ⊗ F,

justifying our claim. More precisely, the geometry (C.21) describes the su(4)⊕ su(2) gauge
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theory in the gauge-theoretic phase given by the following virtual volumes

(0, 1, 0|1)+

(1,−1, 1|1)+ (0, 1, 0|− 1)−

(−1, 0, 1|1)+ (1, 0,−1|1)+ (1,−1, 1|− 1)−

(−1, 1,−1|1)+ (−1, 0, 1|− 1)− (1, 0,−1|− 1)−

(0,−1, 0|1)+ (−1, 1,−1|− 1)−

(0,−1, 0|− 1)−

D Comparisons with known cases in the literature

In this section we provide a comparison with some 5d KK theories known in the literature
via other methods. In particular, we show that the geometries we obtain for these 5d KK
theories allow us to see the 5d gauge theory descriptions of these 5d KK theories that have
been proposed in the literature.

D.1 Untwisted

Let us start with an example of untwisted compactification. It has been proposed [28] that

1
sp(n)(1)

(D.1)

can be described by the 5d gauge theory having gauge algebra su(n+2) with 2n+8 hypers
in fundamental. To see this consider the ν = 1 phase of (5.101)

02n+7
1 12n+1 · · · (n− 2)7 n1

1(n− 1)5eh 2h-xehh2h-
∑

xi e

(D.2)
which after an isomorphism can be written as

02n+7
2n+3 12n+1 · · · (n− 2)7 n1

1(n− 1)5eh e+2f -xehhe e

(D.3)
Now flopping the blowup sitting on Sn back to S0, we obtain

02n+8
2n+4 12n+2 · · · (n− 2)8 n0(n− 1)6eh e+2fehhe e

(D.4)
where we can see that the associated Cartan matrix is that of su(n + 2) and the 2n + 8
blowups sitting on S0 can be identified with the fundamentals. This identification is done
by noticing that the volume for a blowup matches the absolute value of virtual volume of
a weight for the fundamental of su(n+ 2).
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D.2 Twisted

Now, let us consider an example when we twist by an outer automorphism. It has been
proposed in [24] that

2
su(n)(2)

(D.5)

can be described by 5d gauge theory with gauge algebra so(n + 2) and n fundamental
hypers. First let us consider the case when n = 2m. In this case the geometry is displayed
in (5.142). Flopping all the yi, we obtain

m1 (m− 1)6 · · · 22m

02m2m+2

f -xi

f -xi

2h e h

h

e

e

2m

12m2m+2

h

e

(D.6)

Now flopping all the f − xi, we obtain

m1 (m− 1)6 · · · 22m2m

02

2h e h

h-
∑

xi

e

e

12
h-
∑

xi

e

(D.7)

Now we can carry the 2m blowups onto Sm to obtain the geometry

m2m
1 (m− 1)2m−6 · · · 20

02

2h-
∑

xi h e

e

e

h

12
e

e

(D.8)
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which after an isomorphism on Sm can be rewritten as

m2m
2m−4 (m− 1)2m−6 · · · 20

02

e h e

e

e

h

12
e

e

(D.9)

The Cartan matrix associated to this geometry is indeed that for so(2m+ 2) and the 2m
blowups can be identified as 2m hypers in fundamental of so(2m+ 2).

Similarly, the geometry for n = 2m+ 1 is given in (5.143). Flopping xi ∼ yi living on
S0, we obtain

m1 (m− 1)6 · · · 12m+1
2m+2 062h e h 2h-2

∑
xi ee

(D.10)

After performing an isomorphism we can write the above geometry as

m1 (m− 1)6 · · · 12m+1
1 062h e h 2h ee-

∑
xi

(D.11)

Now moving the blowups onto Sm we obtain

m2m+1
1 (m− 1)2m−5 · · · 11 062h-

∑
xi e h 2h ee

(D.12)

which can be rewritten as

m2m+1
2m−3 (m− 1)2m−5 · · · 11 06e h e 2h ee

(D.13)

which precisely describes so(2m+ 3) with 2m+ 1 hypers in fundamental of so(2m+ 3).

E Instructions for using the attached Mathematica notebook

AMathematica notebook is included as supplementary material along with this paper. The
use of this notebook requires installation of the Mathematica package LieArt.nb which can
be found online at. In particular, the notebook provides the evaluation of two functions
Geometry5dKK and SignsKK. The former can be used to compute the shifted prepotential
6F̃ (defined in section 4.2) for 5d KK theories whose associated graph contains either one
or two nodes; see tables 1–5 and tables 8–11. The latter function can be used for the
evaluation of all possible signs associated to different phases of the above prepotential.

The Mathematica notebook is built around the use of the function

Geometry5dKK [...]
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The above function outputs a graphical representation of the shifted prepotential 6F̃ asso-
ciated to the input 5d KK theory. The graphical output is naturally organized in the form
of triple intersection numbers for the associated geometry. See section 5.1.1 for the map
between triple intersection numbers and the shifted prepotential.

Input. Let us now describe possible inputs for the function Geometry5dKK:

• For a single node

k
g(q)

(E.1)

the first input is the number k as shown below

Geometry5dKK [{k ,...}]

• For two nodes α and β, the first input is the matrix Ω =



Ωαα
S Ωαβ

S

Ωβα
S Ωββ

S



:

Geometry5dKK [{Ω ,...}]

See section 3.3 for the definition of Ωαβ
S etc.

• When there is a single node, the second and final input captures the data of g(q).
When there are two nodes, the second input captures the data of g(qα)

α , and the third
and final input captures the data of g(qβ)

β . The data of an affine algebra is captured
by dividing it into the “algebra part” and the “twist part”. For example, the algebra
part of g(q) is g which is a finite Lie algebra, and the twist part of g(q) is q. The
algebra part can be inserted in LieArt format. For example, A-type can be inserted
as

A1, A2, ..., An

B-type can be inserted as

B2, B3, ..., Bn

C-type can be inserted as

C2, C3, ..., Cn

D-type can be inserted as

D3, D4, ..., Dn

E-type can be inserted as

E6, E7, E8
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And other types can be inserted as

G2, F4

The twist part can be inserted as

U, T2, T3

where U means ‘untwisted’ (corresponding to q = 1), T2 means ‘Z2 twisted (corre-
sponding to q = 2) and T3 means ‘Z3 twisted’ (corresponding to q = 3).

The full input thus is as follows:

• For a single node, the following format is used:

Geometry5dKK [{k,{Algebra ,Twist }}]

For example,

Geometry5dKK [{2,{A4 ,T2}}]

• For two nodes, the format is:

Geometry5dKK [{Ω,{Algebra1 ,Twist1},{Algebra2 ,Twist2 }}]

For example,

Geometry5dKK [{Ω,{C3 ,U},{D6 ,T2}}]

In order to consider trivial gauge algebras of type su(1), sp(0), one needs to insert a
zero in the place of the algebra and twist input: that is we perform the replacement
{Algebra, Twist} → 0. For example, if gα is trivial, but gβ is not, then the input
takes the form

Geometry5dKK [{Ω,0,{Algebra2 ,Twist2 }}]

Some of the nodes contain extra decorations. Such nodes can be inserted by using extra
identifiers as follows:

• 1
su(n)(1)

vs. 1
su(n̂)(1)

To incorporate the second case, we replace Twist with {Twist, Frozen}. For exam-
ple,

Geometry5dKK [{1,{A8 ,U}}]

becomes

Geometry5dKK [{1,{A8 ,{U,Frozen }}}]
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• 1
su(6)(1)

vs. 1
su(6̃)(1)

To incorporate the second case, we replace Twist with {Twist, Three}, so that

Geometry5dKK [{1,{A5 ,U}}]

becomes

Geometry5dKK [{1,{A5 ,{U,Three }}}]

• 2
su(n)(1)

vs 2
su(n)(1)

To incorporate the second case, we replace Twist with {Twist, Loop}, so that

Geometry5dKK [{2,{A5 ,U}}]

becomes

Geometry5dKK [{2,{A5 ,{U,Loop }}}]

• k
so(12)(q)

vs 1
so(1̂2)(q)

To incorporate the second case, we replace Twist with {Twist, Cospinor}, so that

Geometry5dKK [{1,{D6 ,U}}]

becomes

Geometry5dKK [{1,{D6 ,{U,Cospinor }}}]

• 3
so(8)(2)

1
sp(1)(1)

2

To incorporate this case we use the usual input without any extra identifiers.

Geometry5dKK [{Ω,{D4,T2},{A1 ,U}}]

• 1
sp(ni)(1)

k
so(7)(1)

vs. 1
sp(ni)(1)

k
so(7)(1)

and

1
sp(ni)(1)

k
so(8)(q)

vs. 1
sp(ni)(1)

k
so(8)(q)
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Figure 3. An illustration of the various features of the initial (sign input) pop-up window of the
function Geometry5dKK. The various aspects, numbered 1 through 5, are explained in the body of
this appendix.

To incorporate these cases, we replace Twist with {Twist, S}. For example, one
would use the following formats:

Geometry5dKK [{Ω,{C2 ,U},{B3 ,{U,S}}}]

and
Geometry5dKK [{Ω,{C2 ,U},{D4 ,{U,S}}}]

Choice of phase. For each input, the output (i.e. the prepotential) depends on a par-
ticular choice of gauge-theoretic phase for the theory. The different gauge-theoretic phases
correspond to different choices of signs for the virtual volumes of the weights of the rep-
resentations associated to the matter content for the input KK theory. See sections 4
and 5.1.3 along with appendix B for more details.

After the input is inserted, the notebook will request as additional input the signs of
virtual volumes for all the weights corresponding to matter hypermultiplets. A pop-up
window appears containing the information needed to make a consistent choice of signs.

For example, consider 1
su(5)(1)

. After inputting the correct data associated to this theory,
a window appears as depicted in figure 3. The information indicated in the window can be
understood as follows:

1 This labels the difference choices of irreducible representaitons of the invariant subal-
gebra (under the twist) in which the hypers of the canonical 5d gauge theory associated
to the KK theory transform. In this particular case we have two distinct representations,
namely the fundamental and the antisymmetric representations of su(5), as can be seen
from table 1. The slider on top can be used to slide between the two irreps. For example
in figure 3, we see data associated to fundamental representation and in 4 we see the data
associated to antisymmetric representation.
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Figure 4. The slider moves between different representations; in the example depicted above, the
slider moves from the first to the second representation.

2 This indicates the highest weight of the representation.

3 Here, Nf represents the number full hypermultiplets transforming in the given rep-
resentation. In figure 3 there are 13 hypermultiplets transforming in the fundamental
representation, while in figure 4 there is one hypermultiplet transforming in the antisym-
metric representation.

4 shows the Hasse diagram of the weight system of the representation. The Hasse diagram
is a graphical representation of the partial order of the weight system. Recall, that given
a highest weight w1 one can construct the entire weight system by subtracting positive
simple roots, wi = wi−1−niαi (αi denote the simple roots). For example, the fundamental
representation of su(5), which is comprised of weights wi=1,...,5, is characterized by the
partial order w1 ≥ w2 ≥ · · · ≥ w5, where wi ≥ wj means that wi − wj = niαi where
ni ≥ 0. This information is important when determining the possible choices of signs for
the virtual volumes of weights lying in this weight system. For example, if we choose w3
to be have a positive virtual volume, then w2 needs to also have a positive virtual volume
since w2 ≥ w3 according to the Hasse diagram.
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The red superscript indicates whether a weight is positive or negative. A positive
(resp. negative) weight is defined as the positive (resp. negative) linear combination of
simple roots. When no mass parameters are turned on, then the signs of virtual volumes
for positive and negative weights are fixed to be positive and negative, respectively (assum-
ing the dual of the irreducible Weyl chamber is defined as the region in which the virtual
volumes of all positive simple roots are positive.) The signs of the rest of the weights are
undetermined by the signs of simple roots and hence can be chosen freely as long as the
ordering described by the Hasse diagram is satisfied. When mass parameters are turned
on, then it is possible for positive weights to have negative virtual volume and negative
weights to have positive virtual volume, for some values of the mass parameters. For a
generic choice of mass parameters, the only constraint for any of the signs of the weights
is that the ordering provided by the Hasse diagram is respected.

5 This is the area in which a choice of signs should be specified.A default input is given
where all the signs are positive, that is “+1”. The notation s[i]j is explained as follows:
i labels each different representation (in this case, i runs over two representations) and j

labels the different of weights (in this case, for the fundamental representation, j runs from
1 to 5, while for the antisymmetric representation, j runs from 1 to 10). For example,
based on the Hasse diagram presented in figure 3 and assuming we do not turn on any
mass parameters, we can make a list of all the allowed choices of signs for the fundamental
representation of su(5):

s(1)1 → 1, s(1)2 → 1, s(1)3 → 1, s(1)4 → 1, s(1)5 → −1
s(1)1 → 1, s(1)2 → 1, s(1)3 → 1, s(1)4 → −1, s(1)5 → −1
s(1)1 → 1, s(1)2 → 1, s(1)3 → −1, s(1)4 → −1, s(1)5 → −1
s(1)1 → 1, s(1)2 → −1, s(1)3 → −1, s(1)4 → −1, s(1)5 → −1.

(E.2)

If we choose to turn mass parameters on then we can also have the following sign choices:

s(1)1 → 1, s(1)2 → 1, s(1)3 → 1, s(1)4 → 1, s(1)5 → 1
s(1)1 → −1, s(1)2 → −1, s(1)3 → −1, s(1)4 → −1, s(1)5 → −1.

(E.3)

In the case of two nodes, the code first asks for the signs of the weights associated
to the first algebra. The pop-up window is exactly as discussed above, with the sole
difference being that the notation for the signs is modified to s[i]j,1, where in addition to
the subscripts i, j that respectively label the different representations and weights, there
is another subscript 1 that indicates the representation is charged under the first algebra.
After the signs associated to the representations of the first algebra have been specified, a
second window appears requesting the signs associated to the second algebra. The format
is identical, with the distinction that the signs are denoted by s[i]j,2, with the subscript 2
labeling the second algebra. Finally, a third window appears requesting signs for the weights
of tensor product representations charged under both the first and second algebras.
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Figure 5. Signs for the tensor product representation.

For example consider 2
su(2)

2
su(2)

, for which the input is:
Geometry5dKK [{{{2,-1},{-1,2}},{A1 ,U},{A1 ,U}}]

An example of the third window is displayed in figure 5. In this case, on the upper
left side of the window instead of a slider one can find the number of hypermultiplets
transforming in a mixed representation. In figure 5 there is one such hypermultiplet, but
in other cases there can be a half-integer number of hypermultiplets. This information
is necessary to determine a consistent choice of signs, since for example mass parameters
cannot be switched on for half-hypermultiplets. The Hasse diagram in this case is that of
the tensor product representation R1⊗R2, where R1 = R2 = 2 of su(2). Let vi denote the
weights associated to the first su(2) and let ωi denote the weights associated to the second
su(2). The weight system of the tensor product of these two representations is

w{i,j} = vi ⊕ ωj . (E.4)

The Hasse diagram of this weight system can now be determined based on the ordering of
the weights vi and ωj . For example,

w{1,1} = v1 + ω1 ≥ v2 + ω1 = w{2,1} (E.5)
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The Hasse diagram and the number of hypermultiplets is enough to determine a consistent
choice of signs. The signs follow a similar notation as above, namely

b[1]i,j (E.6)

where the bracketed ‘1’ indicates that there is only one mixed representation and the
subscripts i, j are the same as the subscripts for w{i,j}, referring to weights of the first and
second algebras respectively.

Allowed signs for the representations. As mentioned above the choice of signs de-
pends on the Hasse diagrams, the values of mass parameters, and on which combinations
of representations are chosen. The function

SignsKK []

determines all the possible allowed signs for each hypermultiplet of a specific theory. A
word of caution: the computational cost of this function increases very quickly with the
dimensions of the representations.

The input of for this function is of the same format described in the previous section:

SignsKK [{k,{Algebra ,Twist }}]

OR

SignsKK [{Ω,{Algebra1 ,Twist1},{Algebra2 ,Twist2 }}]

The output of this function is the appropriate number of hypermultiplets and the type
of representation, together with the Hasse diagrams of the weight systems. As described
above, the Hasse diagram includes superscripts indicating whether a weight is positive,
negative, or indeterminate sign. In the absence of mass parameters the only signs that
need to be determined are those of the indeterminate weights. Note that zero weights have
superscript ‘0’. The output, namely all consistent gauge-theoretic phases of the theory, is
presented both as a collection of Hasse diagrams and as a list of sign choices. The Hasse
diagrams for the allowed signs includes superscripts indicating when the signs are taken
to be positive (blue) or negative (red). This function is useful for determining all allowed
phases and corresponding sign choices when computing the geometry.

It is important to note that in some cases the signs associated to different hypermul-
tiplets are not independent. For example, consider

Nf

2nα + 8 −
nβ −1

2 1
sp(nα)(1)

k

so(nβ)(2)

1
2 (nα ⊗ (nβ − 1))

nβ − 8 − nα
2

Nf

(E.7)

where the extra labels indicate the number of hypermultiplets included in the theory. In
particular, note that there are 2nα +8− nβ

2 full hypermultiplets of sp(nα)(1) and one half-
hyper in a mixed representation. This half-hypermultiplet comes from the branching of
the bifundamental nα ⊗ nβ → nα ⊗ ((nβ − 1)⊕ 1) after performing the twist of so(nβ)(2),
which leaves invariant the algebra so(nβ − 1). This implies that the signs associated to
the half-hypermultiplet are not independent but rather depend on the signs chosen for the
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Figure 6. Hasse diagram for the case nα = 1, k = 3, nβ = 4 of the theory displayed in (E.7). Note
that w{i,j} are the weights of the bifundamental and v1, v2 are the weights of the half-hypermultiplet.

bifundamental representation. In this case the function SignsKK returns all possible sign
choices consistent with these branching rules.

For example, consider nα = 1 , k = 3 and nβ = 4. The Hasse diagram for the
bifundamental combined with the half-hypermultiplet of sp(1) is displayed in figure 6. The
possible sign choices are displayed in figure 7.
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Once the signs have been specified in Geometry5dKK, the following output is returned
(see an example shown in figure 8), and is comprised of the following elements:

1. The triple intersection numbers for the corresponding geometry are presented in a
graphical form similar to the graphs presented in section 5 of this paper. The vertices
of the graph are surfaces and edges between the vertices indicate the intersections
between the corresponding surfaces. The superscript on a vertex i denotes 8 − S3

i .
If the superscript is zero, then it is not displayed. Every edge carries two yellow
boxes at either ends. Consider an edge going between vertices i and j. The number
in the yellow box near the vertex i denotes the triple intersection number SiS2

j ,
and the number in the yellow box near the vertex j denotes the triple intersection
number S2

i Sj . If the number carried by some yellow box is zero, then that box is not
displayed. There is a purple box placed in the middle of every face formed by three
edges joining three vertices, say i, j and k. The number in the purple box denotes
the triple intersection number SiSjSk. If the number carried by purple box is zero,
then it is not displayed.

2. The choice of signs made by the user.

3. The the shifted prepotential 6F̃ . In the case of a KK theory with a single node,
φ0 is the Coulomb branch parameter associated to the affine node of the Dynkin
diagram and φi with i = 1, . . . Rank[Algebra] are the Coulomb branch parameters
associated to the finite part of the diagram. In the case of a KK theory with two
nodes, φ0,1,φi,1 are the Coulomb branch parameters associated to the first (affine)
algebra and φ0,2,φi,2 are the Coulomb branch parameters associated to the second
(affine) algebra.
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any medium, provided the original author(s) and source are credited.
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