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For fundamental, original and influential insights leading to progress in the resolution of 
the black hole information paradox.

Description of the work

Suvrat  was my doctoral student at Harvard. I know him very well and have followed his

scientific trajectory carefully. 

In early work as a student, Suvrat (together with Maldacena, myself and another student)

wrote  an  important  paper  defining  and  computing  an  index  for  superconformal  field

theories. This index has found new applications every year since its invention, and is by

now a central tool in the study of superconformal field theories. According to the Spires

database this 2004 paper has been cited on 574 occasions.  (Interestingly, more than half

of these citations have been gathered over the last 5 years).

After graduating from Harvard, Suvrat wrote interesting papers on the computations of

correlation functions in AdS/CFT using onshell methods in the bulk and on the constraints 

on inflationary correlators stemming from the approximate de Sitter invariance of the 

background spacetime during inflation. 

However principal basis for my recommendation that  Suvrat be awarded the Nishina Asia
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award is his work on the information paradox in black hole physics- in particular for their

now classic  2013 `Papadodimas –  Raju’ paper  (written  in  collaboration  with  Kyriakos

Papadodimas – Spires lists it with 271 citations) and also several follow up papers on the

same theme. In the rest of this letter I will  describe the background to this paper and

follow ups and outline their key contents.

Over 40 years ago, Hawking famously argued that if one applies the usual local rules of

physics – and in particular quantum field theories - to black hole backgrounds, one 

obtains results that appear to violate the unitarity of quantum evolution. Developments 

in string theory over the subsequent decades – including the successful counting of black

hole entropy and especially the AdS/CFT correspondence have made it seem extremely 

unlikely that gravitational systems actually violate unitarity. While most physicists (at least

most string theorists) are convinced that black hole physics must somehow be consistent

with unitarity, the flaw in Hawking’s  original  arguments for a paradox  was never clearly

identified. This defect has led to periodic resurgences of intensive discussion 

on versions  of Hawking’s paradox. 

The most recent such resurgence occurred about 8 years ago, precipitated by the work 

of Mathur and AMPS. In particular the AMPS paper argued that the assumed unitarity of

black hole physics appears to imply that the event horizon of the black hole is 

not a smooth region of space time – as is the case classically – but is, instead, a very 

singular region they called a firewall. According to this picture space time ends at the 

black hole horizon, rather than continuing down to the singularity.

This conclusion – if  correct – would lead to a radical revision of our understanding of

Einstein gravity, and in particular relegate the equivalence principle to an accident 

of classical physics with no real quantum counterpart.  Several exact results about black

hole physics obtained over the last few decades – including incredibly precise matches

between bulk and boundary computations of black hole entropy – would also have to be

demoted to accidents or to be explained by  Euclidean arguments with no Lorentzian

analogue.  

Many physicists including myself  were very reluctant to accept this conclusion – as it `felt’

unaesthetic and wrong. However I, at least, could not convert this feeling into a coherent

explanation for how the Mathur/ AMPS arguments might be evaded.

The AMPS paradox has a version in AdS space. In this context the paradox is particularly



well posed, as the boundary field theory gives us a non perturbative definition of 

quantum gravity.  Using  the standard dictionaries of the  AdS/CFT correspondence, we

understand (more or less) how to construct local operators in the bulk in regions outside

the black hole event horizon in terms of boundary operators.  However  the same is not

true for operators inside the horizon. Marolf and Polchinski had argued that one appears

to run into contradictions if one assumes that such operators exist – no matter how they

are constructed. The difficulty in constructing local operators behind the event horizon

was taken to suggest that these operators – and hence the space time behind the event

horizon – did not exist. This is the AdS version of the firewall. 

The difficulty in constructing local operators behind the event horizon can be understood

in the following way.  In ordinary global AdS space (in the absence of a black hole) we use

up all  the known light operators of the CFT in constructing local operators in the bulk

spacetime (which, recall, has no horizon).  As the spectrum of local operators in the finite

temperature is the same as the spectrum at zero temperature, in a black hole background

there appear to be enough field theory operators to allow the construction of all the local

operators  outside  the  horizon,  leaving  us  with  nothing  left  over  to  create  the

(approximately commuting)  Hilbert  space generated by the operators inside the event

horizon. 

Suvrat  and  Kyriakos  explained  how  this  conclusion  could  be  evaded.  A  simple

observation about thermal field theory – that I now review – lies at the heart of Suvrat and

Kyriakos’s construction. Recall that correlations at finite temperature in a field theory can

be reworded as correlators in a doubled field theory – the so called thermo field double

theory  –  taken  in  a  very  particular  state  (the  so  called  thermofield  double  state

proportional to  $  \sum_i  e^{-\beta E_i/2} |E_i> |E_i>$).  Kyriakos and Suvrat noticed that

the  action  of  an  annihilation  operator  $a$  on  the  first  copy  of  the  field  theory  is

proportional to the action of  $a^\dagger$   on the second copy of the field theory.  In other

words $a$ of the first copy of the field theory creates quanta of the second copy of the

field theory. On the other hand $a^\dagger$ of the first copy continues to create quanta of

the first copy of the field theory. 

It follows that the action of these operators - $a$ and $a^\dagger$ of the first copy of the

field theory - on the thermofield double state generates the Hilbert space of both 

the first and the second copies of the field theory. 

The interesting point is not that the full Hilbert space is the square of the Hilbert space of

any  one  copy  of  the  field  theory  –  that  is  manifest  in  the  initial  construction of  the



thermofield  double  system.  The  interesting  point  is  that  both  Hilbert  spaces  can  be

constructed entirely out of operators belonging to only the first copy of the field theory, 

when acting on the thermofield double state.

Notice that the conclusion of the last paragraph is possible only because the thermofield

double  state  is  highly  entangled.  Had  the  reference  state  been  unentangled  –  or

possessed only a limited amount of entanglement between the two copies of the field

theory – then it  would not have been possible to generate every state in both Hilbert

Spaces by acting only with operators from one side. A large degree of entanglement is  a

key element in the Papadodimas Raju story.

Now consider an experiment in which a field theory – say N=4 Yang Mills - starts out in a

particular state and then thermalizes. The fundamental description of this system takes

place in the Hilbert space of one copy of the field theory (the only copy that exists). 

The second copy of Hilbert space – present in the thermofield double as a mathematical

artifact  to  describe  thermal  physics  –  is  simply  not  present  in  this  physical  problem.

Nonetheless  correlators  in  this  system  are  well  approximated  by  correlators  in  the

thermofield double, once the state has equilibriated. Suvrat and Kyriakos’s work starts out

with the observation that it must thus follow – from the logic of the previous paragraph –

that  the  effective  Hilbert  space  of  `simple’ excitations  about  this  equilibriated  state  –

created  by  acting  with  $a$  and  $a^\dagger$  operators  of  the  field  theory  on  the

equilibriated state -  must also be approximately that of the thermofield double – and thus

roughly the square of the Hilbert Space of a single copy of the field theory.

I re-emphasize that we are now discussing an approximately thermalized pure state in a

single copy of the field theory. We are no longer in the framework of the thermofield

double - at the fundamental level we have only one copy of Hilbert space – the second

copy does not exist. Nonetheless the effective low energy Hilbert Space of excitations

about an approximately equilibriated state must be – roughly – two copies of what it would

be in the vacuum. Within reasonable correlators, the $a$ operators behave as if they are

(proportional to) $a^\dagger$ operators of an independent Hilbert Space – even though

no such independent Hilbert space actually exists. 

While these words are suggestive, they are just words. Suvrat and Kyriakos converted

these words into precise and beautiful equations. They presented a detailed construction

of the new effective $a\dagger$ operators, which, of course, are not really constructed out

of new degrees of freedom but are actually very complicated operators in the original field



theory whose microscopic form depends on the details of the (nearly thermalized) state

about which they are constructed.

An  important  feature  of  the  Papadodimos  Raju  construction  is  the  following.  The

microscopic structure of these new effective $a\dagger$ opertors is very different about

two different nearly thermalized states. Indeed the state dependence of the microscopic

construction is precisely tailored to ensure that (reasonable) correlators of the new $a^\

daggers$  about  the  state  around  a  nearly  thermalized  state  $|\psi>$  are  infact  well

approximated by second copy $a^\dagger$ correlators in the thermofield doubled space,

and so (to good approximation) are independent of $|psi>$. 

Suvrat and Kyriakos demonstrate that this effective doubling of the low energy Hilbert

space constructed about any particular nearly equilibrated state can be used to construct

the spacetime inside the black hole event  horizon. The state dependence of the new

operators – needed to construct the spacetime behind the event horizon is an intriguing -

and  in  some  people’s  (but  not  my  own  –  see  below)  problematic  –  aspect  of  the

Papadodimas/Raju construction.

Suvrat and Kyriakos made these observations in a precise and quantitative manner in

their beautiful (and very carefully written) 2013 paper. The qualitative picture they sketch

seems rather compelling to me. The spacetime behind the event horizon of a black hole –

after all  - does not exist until the black hole is formed. As the AdS/CFT dual description of

the process of black hole formation is field theory thermalization, in retrospect it seems

natural that the set of local operators behind the event horizon of a black hole are not pre

existing operators in the Hilbert space of the field theory, but effective new operators that

emerge once the field theory state  has approximately  thermalized.  It is thus natural that

the  construction  of  the  operators  of  the  new  Hilbert  space  depends  in  an  important

manner on the details of the thermalized state – so as to reproduce state independent

correlators that mimic those of the thermofield double. 

In summary I  feel that the work of Kyriakos and Suvrat have clearly demonstrated that

the  apparently  sharp  Mathur  and  AMPS  paradoxes  are  not  as  unavoidable  as  they

appeared. 

Over  the  last  couple  of  years  there  has  been  substantial  new  progress  in  the

understanding of the black hole information paradox. This progress – taken forward by

Pennington,  Almheri,  Maldacena,  Wall,  Englehardt,  Stanford,  Shenker,  Mahajan,  and



Hartman  among  others  –  centres  around  the  observation  that  it  is  possible  to  use

semiclassical  methods  to  compute  the  entanglement  entropy  of  Hawking  radiation  in

certain two dimensional models of quantum gravity coupled to an external field theory

bath.  The  result  of  these  computations  gives  an  answer  consistent  with  general

expectations (unitarity i.e. the Page curve). Perhaps the most striking implication of these

computations is that the degrees of freedom that encode local bulk excitations inside the

`island’ (roughly inside the black hole horizon) are exactly the same as the degrees of

freedom that  encode the Hilbert space of the Hawking radiation – the difference is only

that while the Hawking radiation modes are simple operators when expressed in terms of

these degrees of freedom, the `Island’ modes are highly complicated state dependent

modes.  This  feature  is,  of  course,   highly  reminiscent  of  the  Papadodimas  Raju

construction (where the  same degrees of  freedom encode the spacetime outside  the

event  horizon  in  simple  operators  but  the  spacetime  inside  the  event  horizon  in

complicated operators). Indeed, in my view, these recent developments may thought of as

a  derivation  -  using  semi  classical  gravity-   of  the  correctness  of  version  of  the

Papadodimas Raju construction. 

On a slightly tangential note I would also like to highlight another work of Suvrat (number

[1] in the list of 3 publications below) that fascinatingly argues that the detailed form of the

resolution of the black hole information paradox will be different in the toy models that

have been recently  discussed (where  the  Hawking radiation consists  of  modes in  an

quantum field theory) and in gravity in flat space (where the Hawking radiation propagates

in a space time itself subject to gravitation, and in particular subject to the gravitational

constraint equation). I find this paper fascinating for many reasons beyond those stated in

the abstract of the paper. First because it suggests a certain inevitability of holography

from  a  semi  classical  gravitational  point  of  view  and  second  because  it  seems  like

progress towards finding the holographic description of flat  spacetime. I  feel it  is very

possible that this relatively new work will lead to important progress in several directions

over the coming years. 

The Hawking information puzzle is  not  yet  fully  resolved.  In  particular  we still  do not

understand how to compute the precise final state that follows from the evaporation of any

given black hole. However it now seems extremely likely to me that the final theory of the

black  hole  interior  –  a  framework  that  will  usefully  allow  us  to  perform  quantum

computations in and around the event horizon and still lead to manifestly unitary results –

will incorporate the key elements of the Papadodimas – Raju proposal.  I thus think it is

likely that, when the dust settles, it will be recognized that Suvrat and Kyriakos have made



a substantial contribution to the resolution of perhaps the most puzzling – and perhaps

the most intriguing – paradoxes of theoretical physics of the last 40 years. For this reason

I  strongly – and unreservedly -  recommend that  Suvrat be awarded the Nishina Asia

Award. 
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Contact Information
• International Centre for Theoretical Sciences phone: +91-80-4653-6330

TIFR, Shivakote, Bengaluru 560 089 email: suvrat@icts.res.in

Date of Birth
• 15 December 1981 (Age: 39 years)

Education
• Harvard University,

PhD (May 2008),
Thesis: Supersymmetric Partition Functions in the AdS/CFT Conjecture,

A.M.(2003).

• St. Stephen’s College, B.Sc. (Hons), Physics, 1999–2002.
• Sardar Patel Vidyalaya, All India Senior School Examination, 1999.

Current Position
• Associate Professor “G”, International Centre for Theoretical Sciences (TIFR), 2017 – present.

Previous Positions
• Reader “F”, International Centre for Theoretical Sciences, TIFR, 2012–16.
• Ramanujan Fellow, Department of Science and Technology. Hosted at the Harish-Chandra Research Institute

2010–12.
• Postdoctoral Fellow, Harish-Chandra Research Institute 2008–10.

Awards
• ICTP Prize, Awarded by the International Centre for Theoretical Physics, 2019.
• Swarnajayanti Fellowship, Department of Science and Technology, 2018–23.
• Saraswathi-Cowsik Medal, Awarded by the TIFR Alumni Association, 2015.
• INSA Medal for Young Scientists, Awarded by the Indian National Science Academy, 2013.
• NASI-Young Scientist Platinum Jubilee Award, Awarded by the National Academy of Sciences of

India, 2013.
• Ramanujan Fellowship, Department of Science and Technology, 2010 – 2015.
• St. Stephen’s College centenary medal, Awarded by St. Stephen’s College, 2002.
• International Physics Olympiad (Padua): Represented India at the XXX International Physics Olympiad,

Padua (1999) as one of five students selected from the country. Was awarded a Bronze Medal and a Special
Prize for the most original solution to the 2nd theoretical problem.

• A separate list of other prizes is attached.

Adjunct Affiliations
• Simons associate, International Centre for Theoretical Physics, 2020–25.
• Adjunct faculty (string theory), Harish-Chandra Research Institute, 2013–15.
• Fellow, Department of Physics, Harvard University, 2010–2012.



Visiting Positions
• Cheng Visiting Fellow, Center for Mathematical Sciences and Appications (Harvard), Spring 2015.
• Visiting member, Institute for Advanced Study (Princeton), Fall 2012.
• Visiting Assistant Professor, Brown University, Spring 2012.
• Visiting Scientist, Tata Institute of Fundamental Research, Spring 2009.

Fellowships and Scholarships
• Purcell Fellowship, Harvard University, 2002 – 2003.
• An Wang Fellowship, Harvard University, 2003.
• Graduate Research Fellowship, Massachusetts Institute of Technology, 2002 – 2003(declined).
• Graduate Research Fellowship, Cornell University, 2002 – 2003(declined).
• Graduate Teaching Fellowship, California Institute of Technology, 2002 – 2003 (declined).
• Kishore Vaigyanik Protsahan Yojana, Department of Science and Technology, administered by the

Indian Institute of Science, Bangalore, 1999 – 2002. Awarded for representing India at the XXX International
Physics Olympiad, Padua(1999).

• Indian Space Research Organization Scholarship, Department of Space, 1999 – 2004(declined). Also
awarded for representing India at the International Physics Olympiad, 1999.

Grants
• P.I. on the Swarnajayanti fellowship research project, “Holographic Investigations of the Black Hole Interior”,

Department of Science and Technology (India), 2018–23.
• P.I. on the Ramanujan fellowship research project, “Amplitudes in gauge theory and gravity”, Department

of Science and Technology (India), 2010–15.
• Co P.I. on the CEFIPRA Research Project, “Holography and its applications”, (P.I. Sandip Trivedi), Indo

French Centre for the Promotion of Advanced Research, 2015–18.

Supervisory Experience
• PhD Students:

1. Sudip Ghosh (2014–18) → postdoctoral fellow at Okinawa Institute for Science and Technology.
2. Pushkal Srivastava (2015–2020) → postdoctoral fellow at Indian Institute of Science.
3. Joydeep Chakravarty (2018–present). PhD expected 2022.
4. Chandramouli Chowdhury (2019–present). PhD expected 2023.
5. Priyadarshi Paul (2020–present). PhD expected 2024.
6. Tuneer Chakraborty (2020–present). PhD expected 2024.

• Masters Thesis Students: Ruchira Mishra, (IISER Mohali, 2020-21), Vijay Kumar (ICTS, 2019–20),
Nidhi Sudhir (IISER Pune, 2017-18), Rohit Kalloor (IISc Bangalore, 2015–16), Ankit Vikrant (BITS Goa,
2013–14).

• Summer Students: Supervisor for the S. N. Bhatt Fellowship (ICTS) in 2015, 2017, 2019. Supervisor
for the Indian Academy of Sciences Summer Programme in 2014, 2013, 2011, 2010. Supervisor for the HRI
visiting students programme 2010. Summer students include Roji Pius (faculty at IMSc), Vivek Saxena
(graduate student at Stony Brook), Himanshu Khanchandani (graduate student at Princeton), Anindya
Banerjee (graduate student at Rutgers).

• Other Supervisory Activities: I have been helped in mentoring several postdocs at ICTS (Bangalore)
including Archisman Ghosh, Prasant Samantray, Yuki Yokokura, Amin Ahmed Nizami, Junggi Yoon, Sid-
dharth Prabhu and Victor Godet. I also worked with Shailesh Lal— then a graduate student at HRI— at
the start of his PhD.



Teaching
• Courses Taught: I have taught the following full courses for PhD students:

1. The Black Hole Information Paradox, Jauary – April 2021 at ICTS-TIFR. (This is an advanced elective
course being taught virtually due to pandemic restrictions. Although the course is formally an ICTS
course, it is being attended by students from other institutions in India and also by students from
institutions in other countries including China, France, Germany, Iran, Japan, Netherlands, South
Africa, UK and USA. Recorded lectures can be found at www.suvratraju.net/classes)

2. Advanced Quantum Mechanics, August – December 2019 at ICTS-TIFR.
3. Advanced Quantum Mechanics, August – December 2018 at ICTS-TIFR.
4. Quantum Mechanics II, August – December 2017 at ICTS-TIFR.
5. Quantum Aspects of Black Holes and the Information Paradox, August – December 2016 at ICTS-TIFR.
6. Advanced Mathematical Methods in Physics, January – April 2014 at IISc.
7. Classical Mechanics, August–December 2013 at ICTS.
8. General Relativity, August–December 2011 at HRI.
9. Reading Course on Introduction to String Theory: January–May 2011 at HRI; September–December

2014 at ICTS; September–December 2015 at ICTS.
• Mini-Courses Taught: I have taught mini-courses at the following schools for graduate students:

1. “The Information Paradox”, Mandelstam Theoretical Physics School, Durban, January 2017.
2. “Black Holes and their Puzzles”, XXX SERC Main School on High Energy Physics, BITS Pilani,

December 2015.
3. “The Information Paradox in AdS/CFT”, CERN Winter School, February 2015.
4. “Local Operators, the Black Hole Interior and the Information Paradox in AdS/CFT”, Asian Winter

School in Particles, Strings, and Cosmology, Puri, January 2014.
5. “On-shell techniques for scattering amplitudes,”, ICTS-RADCOR School on Radiative Corrections,

SINP (Kolkata), March 2011.
6. “Representations of the superconformal algebra,” Asia Pacific Center for Theoretical Physics, Winter

School, Pohang, February 2012.
• Teaching Fellowships: I was a teaching-fellow for the following courses at Harvard. My responsibilities in

the courses below included assisting the instructor by teaching regular sections, leading discussions, preparing
and grading assignments and occassionally giving lectures.

1. Quantum Field Theory II, Spring 2006, Instructor: Lubos Motl
2. Quantum Field Theory I, Fall 2005, Instructor: Lisa Randall
3. String Theory I, Fall 2005, Instructor: Joseph Minahan
4. Introductory Electrodynamics, Spring 2005, Instructor: Howard Georgi
5. History and Philosophy of 20th Century Physics, Spring 2004, Instructor: Peter Galison
6. Quantum Field Theory I, Fall 2003, Instructor: Arthur Jaffe
7. Introductory physics, Summer 2003, Instructor: Cumrun Vafa

In Fall 2005, I was awarded a Certificate of Distinction for Excellence in Teaching.

Professional Activities
• Editor (member of the “editorial college”) at Scipost (ISSN: 2542-4653; Journal Impact Factor: 5.05), 2019–

24.
• Referee for several journals including Physical Review Letters, New Journal of Physics, Physical Review D,

Journal of High Energy Physics, Letters in Mathematical Physics, European Physical Journal C, General
Relativity and Gravitation, Modern Physics Letters A, Central European Journal of Physics, Nuclear Physics
B, Proceedings of the National Academy of Sciences, Peerj, Pramana, Economic and Political Weekly,
Resonance.
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Service
• Member of the organizing committee for the “Kavli Asian Winter School”, Sogang University, Seoul (2019).
• Member of the organizing committee for AdS/CFT@20, ICTS (2018).
• Organizer for the “Kavli Asian Winter School”, ICTS (2018).
• Organizer for the “Bangalore Area Strings Meeting”, ICTS (2016).
• Member of the Organizing Committee for the Strings 2015 conference.
• Organizer for the “Bangalore Area Strings Meeting”, ICTS (2015).
• Organizer for the Subrahmanyan Chandrasekhar Lectures and Discussion meeting on “Scattering without

Spacetime”, ICTS (2012).
• Organizer for a discussion meeting on “Entanglement, Holography and the Information Paradox”, ICTS

(2013).
• Organizer for a conference on the “Black Hole Information Paradox”, Harish-Chandra Research Institute

(2014).
• Member of the organizing committee for the Asian Winter School in Particles and Strings, Puri (2014).
• Academic resource person for the 46th International Physics Olympiad (Mumbai, 2015).
• Convenor of the ICTS graduate studies cell (2017–2020), member of the TIFR Subject Board of Physics

(2015–2020), ICTS representative on the TIFR Academic Council (2017–2020), Convenor of the ICTS Cam-
pus Service Committee (2015–17). Convenor of the ICTS Postdoctoral Committee (2020 – present). ICTS
coordinator for the JEST exam 2021. Member of various other academic/non-academic committees, includ-
ing the ICTS Faculty Search and Selection Committee.

Invited Talks
• Quantum Gravity, Holography and Quantum Information, 2021 (Virtual, Max Planck Institute and Ludwig

Maximilian University (Munich))
• Strings 2020 (University of Cape Town, Virtual).
• Black hole microstructure conference, 2020 (Saclay, Virtual).
• Chennai symposium on gravitation and cosmology, 2020.
• National Strings Meeting, 2019 (Bhopal).
• Triangle Meeting on Holography, November 2019, (Utrecht)
• Loops 2019 (Pennsylvania State University).
• Institute Lecture, IIT Roorkee, 2019.
• Indian Strings Meeting 2018 (Thiruvananthapuram).
• Quantum Information and the Structure of Spacetime, (IAS, Princeton), 2018.
• Black holes, quantum information and spacetime reconstruction, (CERN, Geneva), 2018.
• Quantum Information in Quantum Gravity 4 (GGI, Florence), 2018.
• Focus Week on Quantum Gravity (KIPMU, Tokyo), 2018.
• Saha Theory Workshop (SINP, Kolkata), 2018.
• Strings 2017 (Tel Aviv)
• Indian Association of General Relativity and Gravitation, 29th meeting (IIT Guwahati), 2017.
• First Mandelstam School on Theoretical Physics (Durban), 2017.
• String Theory: Past and Present (ICTS, Bangalore), 2017.
• TEDX, Birla Institute of Technology and Science (Goa), 2017.
• Fundamental Problems of Quantum Physics (ICTS, Bangalore), 2016.



• Nordita Program on Black Holes and Emergent Spacetime (Nordita, Stockholm), 2016.
• ERC and Solvay Workshop, Black Holes, Holography and Cosmology (Solvay Inst, Brussels), 2016.
• 8th Taiwan String Workshop, National Tsing Hua University, 2015.
• Discussion Meeting on Quantum Information Processing, IISc Bangalore 2015.
• Strings 2015 (Bangalore.)
• CERN Winter School, 2015.
• Discussion Meeting on Entanglement and Holography, (ICTS, Bangalore), 2014.
• Autumn Symposium on String/M Theory (KIAS, Seoul), 2014.
• Strings 2014 (Princeton).
• Workshop on AdS/CFT and Holography (IPM, Tehran), 2014.
• Discussion Meeting on the Information Paradox (HRI, Allahabad), 2014.
• National Strings Meeting, (IIT Kharagpur), 2013.
• Quantum Information Processing and Applications, (HRI, Allahabad), 2013.
• Cosmological Frontiers in Fundamental Physics, (Perimeter Institute, Waterloo) 2013.
• Seventh Regional Meeting in String Theory, Crete, 2013.
• Non-perturbative gauge theories and holography (IISc, Bangalore), 2013.
• Simons Symposium, 2013 (declined)
• Indian Strings Meeting, 2012 (Puri)
• Strings, 2012 (Munich) (declined)
• Amplitudes, 2012 (DESY, Hamburg)
• 16th Winter School on Fields and Strings, 2012 (APCTP, Pohang)
• ICTS Workshop on String Theory, 2012 (Bangalore)
• National Strings Meeting, 2011 (Delhi) — overview talk
• Back to the Bootstrap, 2011 (Perimeter Institute, Waterloo)
• Subrahmanyan Chandrasekhar Discussion Meeting on Applied String Theory, 2011 (TIFR, Mumbai)
• Workshop on Higher Spins and Holography, 2011(Allahabad)
• Indian Strings Meeting, 2011 (Puri)
• Advanced School on Radiative Corrections for the LHC, 2011 (SINP, Kolkata)
• Summer Symposium of the Union of Concerned Scientists, 2010 (DESY, Hamburg)
• National Strings Meeting, 2010 (Mumbai) — overview talk
• IPM String School and Workshop, 2009 (IPM, Tehran)
• IPM String School and Workshop, 2007 (IPM, Tehran)
• Indian Strings Meeting, 2007 (HRI, Allahabad)



Seminars and Colloquiums
2021 VSI (Groningen), IISER (Thiruvananthapuram).
2020 IISc (Bengaluru), AEI (Potsdam, virtual), Edinburgh (virtual), ICTS (virtual), Tel Aviv (virtual), QASTM

seminar (MPI, virtual), Perimeter Institute (virtual), Stanford University (virtual), Harvard Black Hole
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1 Introduction

Even though quantum gravity has attracted theoretical interest for decades, several aspects

of the theory continue to be actively debated. This includes, among other questions, the

issue of how to define “local operators” in a theory of quantum gravity. Where black holes

are involved, the situation seems to be even more puzzling. What is the nature of space-

time behind the horizon of the black hole? What about the horizon itself? Even though

the principle of equivalence suggests that there is nothing special about the horizon of a

large black hole, there have been several speculations that quantum gravity effects cause

the interior to be modified into a fuzzball [1–5], and more recently, that the horizon of

an “old black hole” is replaced by a firewall [6]. (See also [7–24].) These latter proposals

originate, not from direct calculations in quantum gravity, but rather in arguments that

the information paradox (in various incarnations) cannot be solved without modifying the

geometry at, or behind the horizon.

While quantum gravity is a mysterious subject, the AdS/CFT correspondence [25] pro-

vides us with a setting where we can examine these ideas within a perfectly well defined the-

ory. To this end, in this paper we would like to examine the following conceptual questions:

• Is it possible to describe the results of local experiments in AdS, at least within

perturbation theory in 1
N , using the boundary field theory?

• In the presence of a black hole, can we also describe local experiments behind the

black hole horizon in the boundary theory?

– 1 –
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• Does our construction of the degrees of freedom behind the horizon shed any light

on the information puzzle?

More precisely, we will imagine that within anti-de Sitter space, we start with some matter

that then collapses to form a large black hole. We will then try and reconstruct local

operators outside this black hole, and behind the horizon.

In fact, if we imagine an observer who lives outside this black hole for a while and

then dives in, then we would require answers to all the questions above to describe his

experience; this is the reason for the title of our paper.

We will consider some strongly coupled CFT in d dimensions, which has the proper-

ties that would allow it to have a bulk dual, without restricting ourselves to any specific

example of the AdS/CFT correspondence. We will place the CFT in a pure initial state

that thermalizes after a while i.e. it evolves to a state that is almost indistinguishable from

a thermal state. In this state, we will then show how to reorganize all the operators that

are accessible in the CFT to a low-energy observer, into fields that are labeled by points

in the semi-classical geometry of a big black hole in AdSd+1. We emphasize that these

are still CFT operators, although rather than being labeled by a boundary point, they are

labeled by a bulk point. We will further show, to lowest order in the 1
N expansion and

argue to higher orders, that the correlators of the operators that we have constructed are

the same as the correlators of perturbative fields on this geometry. Second, we will push

this construction past the horizon and show how to construct perturbative fields behind

the horizon in terms of CFT operators. This will give us important clues about how to

resolve the firewall paradox, as we explore in section 6.

Our construction follows important work by several other authors [26–37]. However,

as we describe in more detail below, we have been able to make some technical improve-

ments on the construction of holographic operators outside the horizon. Our construction

of the black hole interior in terms of CFT data is new, and to our knowledge has not been

explored before.

We now quickly summarize our results. Before considering the black hole, we start by

considering empty AdS. To construct local operators in this space, we consider a general-

ized free-field [38] O(t,x) when the CFT is in the vacuum. Working with the modes Oω,k

of O(t,x) in momentum space, we are able to write a CFT operator that is labeled by a

point in the bulk of the AdS Poincare patch

φCFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d
[Oω,kξω,k(t,x, z) + h.c.] (1.1)

When the mode functions ξ are appropriately chosen, the operator on the left has the

same correlators as a free-field propagating in AdSd+1: for example, its commutator at two

points that are spacelike separated in AdSd+1 vanishes. We show how these operators can

be continued beyond the Poincare patch onto all of global AdS. This serves as a warm up

for our next task of looking beyond the black hole horizon.

We then consider generalized free-fields O(t,x), but in a CFT state that, although

pure, is “close” to the thermal state. We will refer to this state as |Ψ〉 below. Now, we find

– 2 –
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that we have to write

φCFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d
[Oω,kfω,k(t,x, z) + h.c.] (1.2)

Although (1.2) looks deceptively similar to (1.1), there are several differences. First, the

mode functions f are different from the ones that we encountered above. Another important

difference is that, while in (1.1), we can set the mode functions for all cases where ω2 < k
2

to zero, we cannot do so in (1.2). Nevertheless, with f chosen appropriately, (1.2) gives a

good and local description of fields in front of the black hole horizon.

Next, we point out that in this pure state |Ψ〉, after it has settled down, for each such

operator O, there must necessarily exist operators Õ that have the properties that they

(a) commute with O and (b) that, in the state |Ψ〉, measurements of Õ are completely

(anti)-correlated with measurements of O. (We make this more precise in section 5.) For

us, these operators Õ play the role that operators in the “second copy” of the CFT would

have played, had we been dealing with an eternal black hole. Using these operators Õ we

now construct operators behind the horizon:

φCFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d

[
Oω,kg

(1)
ω,k(t,x, z) + Õω,kg

(2)
ω,k(t,x, z) + h.c.

]

where g(1) and g(2) are again functions that are chosen to make this operator local.

Our construction is perfectly regular as we cross the horizon. This appears to be in

contradiction with both the fuzzball and the firewall proposals. In section 6 we first show

that it is not possible to pinpoint the microstate of the CFT by measuring correlators of

light operators to any given fixed order in the 1
N expansion. Our construction then im-

plies that by doing experiments that are limited to some finite order in 1
N , either at low

or high energies, the bulk observer cannot distinguish the microstates of the black hole.

Since the fuzzball proposal solves the information paradox by postulating that the observer

can detect the microstate by doing “low energy experiments”, our proposal appears to be

inconsistent with this resolution.

Turning to the firewall paradox, in this paper we provide only indirect evidence for

the absence of firewalls at the horizon. This is because our construction works in detail

for a big black hole that does not evaporate (except over the Poincare recurrence time),

and so this leaves us with the theoretical possibility that small black holes in AdS could

have firewalls near the horizon. However, our description of the degrees of freedom in the

interior of the black hole also provides us with several lessons that we can use to understand

the information paradox that appear to make firewalls superfluous.

In particular, our construction can, roughly, be interpreted as showing how, if we

expand our space of observables to include operators that give us finer and finer information

about the CFT microstate, then eventually we reach a stage where the operators behind

the horizon are no longer independent of the operators in front of the horizon. Such a

description provides a natural realization of black-hole “complementarity” [39, 40] and, as

we explore below, removes the necessity of firewalls.

– 3 –
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We should also point out that while this might naively imply a violation of causal-

ity, this causality violation is visible only when we measure very high point correlators

of operators (where the number of insertions scales with N) or equivalently measure a

low point correlator to exponential accuracy in N . At this level of accuracy, we do not

believe that a semi-classical spacetime description makes sense at all and so this putative

causality-violation is not a cause for concern.

There have been many earlier attempts to study the interior of the black hole us-

ing AdS/CFT and the literature on the information paradox is vast. Besides the papers

mentioned above, a very incomplete list of references which were relevant to our work

include [41–63].

A brief overview of this paper is as follows. In section 2, we describe the construction of

local operators in empty AdS using boundary operators in a flat space CFT in a pure state.

We work in the Poincare patch and then show how our construction can be continued past

the Poincare horizon into global AdS. In section 4, we repeat this construction in front

of the horizon of a big black hole in AdS. In section 5, we push this construction past

the black-hole horizon and write down local bulk operators behind the horizon in terms of

CFT operators. In section 6, we discuss the implications of these results, with a particular

view to the information paradox and various unconventional proposals for resolving it —

including the “firewall” paradox and the fuzzball proposal. We also discuss a qubit toy

model that is surprisingly effective at realizing many of these ideas. In section 7, we address

some common worries and show that our construction is not destabilized by tiny effects

like Poincare recurrence on the boundary. We also describe schematically how it may be

extended to higher orders in the 1
N expansion, and discuss some other subtleties. We

conclude in section 8. The appendices provide some technical details and also examine the

specific case of two-dimensional thermal correlators and the BTZ-black-hole background.

2 Reconstructing local bulk observables in empty AdS

In this section, we develop the methodology of constructing local operators from boundary

operators in empty AdS.

Consider an AdSd+1/CFTd duality, where we have some generalized free fields O that

live on the boundary. By generalized free fields, we mean that the correlators of O factorize

to leading order in some parameter, which we denote by 1
N .1

〈0|O(x1) . . .O(x2n)|0〉 =
1

2n

∑

π

〈0|O(xπ1
)O(xπ2

)|0〉 . . . 〈0|O(xπ2n−1
)O(xπ2n

)|0〉+ . . . ,

(2.1)

where π runs over all permutations and the dots denote terms subleading in 1/N .

Even though the operators O look deceptively simple, they are, in fact, rather compli-

cated as Heisenberg operators. For example, as we will discuss below, the same Heisenberg

1In this paper, by N we are not referring to the rank of the gauge-group on the boundary. The reader

may prefer to think of N as the coefficient of the two-point function of the stress tensor (which actually

scales like K
2 in the N = 4 SYM theory with gauge group SU(K)) but more generally, N can be taken to

any parameter that controls the factorization of correlators.
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operators have rather different properties about a thermal state: for example, their 2-point

function will look very different from the 2-point function about the vacuum. This is

because there are 1
N effects that we have neglected in (2.1) that become important in a

thermal state where the energy density scales with some power of N .

However, for now, we turn to the properties of these operators in the vacuum of the

CFT, since that is what is pertinent to empty AdS.

2.1 Properties of generalized free field modes about the vacuum

It will be convenient for us to work in Fourier space, as opposed to the position space

prescriptions of [26, 28–32, 37, 64]. It will also be convenient to work with correlators

where we choose a prior ordering, as opposed to the more commonly considered time-

ordered correlators for reasons that will become apparent shortly.

We define the Fourier modes of O(x) as usual

Oω,k =

∫
dtdd−1

x O(t,x) eiωt−ik·x. (2.2)

Here by the boldface k,x we denote the (d−1)-dimensional spatial components of the corre-

sponding d-vectors. We are working in signature mostly plus. Let us determine a few prop-

erties of these modes. Since the only correlators at leading order in 1
N are 2-point functions,

we can analyze the properties of these Fourier modes by studying the Wightman functions.

Let us first point out the advantage of Wightman functions — we use this term syn-

onymously with correlators where we pick an ordering ahead of time — over time-ordered

correlators. The time-ordered correlator is defined by

〈0|T{O(t,x)O(t′,x′})|0〉 = θ(t− t′)〈0|O(t,x)O(t′,x′)|0〉+ θ(t′ − t)〈0|O(t′,x′)O(t,x)|0〉.

When we Fourier transform this expression, apart from the Oω,k defined above, we also get

a contribution from the Fourier transform of the θ function. So, to study the properties of

Oω,k, it is simpler to consider the Wightman function.

An analysis of the Wightman 2-point function. We now proceed to analyze the

2-point Wightman function to study the properties of Oω,k. To compute this object, we

start in Euclidean space, where the 2-point correlator is given by

〈O(τ,x)O(0,0)〉 =
(

1

τ2 + x2

)∆

.

Here ∆ is the conformal dimension of O. This form is fixed by scale invariance. Now,

let us continue to Lorentzian space. When we continue to Lorentzian space, to get the

time-ordered correlator we should take τ = i(1− iǫ)t. The logic of this prescription is that

we want to rotate the time contour but not rotate it all the way. In particular, as Euclidean

time runs from −i∞ to i∞, we want Lorentzian time to run from −∞(1+ iǫ) to ∞(1+ iǫ).

With this prescription, we find that the time-ordered correlator is given by

〈0|T {O(t,x),O(0,0)} |0〉 =
( −1

(1− iǫ)2t2 − x2

)∆

=

( −1

t2 − x2 − iǫ

)∆

,
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The time-ordered function coincides with the Wightman function for t > 0. If we assume

that O is a Hermitian operator then the Wightman function for t < 0 is simply the complex

conjugate of the time-ordered correlator.

〈0|O(t,x)O(0,0)|0〉∗ = 〈0|O(0,0)O(t,x)|0〉 = 〈0|T{O(0,0)O(t,x)}|0〉, for t < 0,

This leads to

〈0|O(t,x),O(0,0)|0〉 =
( −1

t2 − x2 − iǫt

)∆

=

( −1

(t− iǫ)2 − x2

)∆

. (2.3)

Let us understand this expression. We choose the branch cut of the function f(x) = x∆

to lie along the negative x axis and f to be real for positive real x. Then, the iǫ prescription

tells us how to pick up the phase of the answer. For any point on the (t,x) plane let us

define the following real number

ξ ≡
∣∣t2 − x

2
∣∣∆ .

Notice that this is an unambiguously defined positive real number (or zero, on the light-

cone). The Wightman function is

〈0|O(t,x)O(0,0)|0〉 = eiQ

ξ
(2.4)

where the phase–Q is as follows

Q =





0 for x2 − t2 > 0,

−π∆ for t2 − x
2 > 0, and t > 0

π∆ for t2 − x
2 > 0, and t < 0

We should emphasize that this is a perfectly Lorentz invariant prescription. For x
2 > t2,

there is no ambiguity in the choice of phase. For t2 > x
2, a Lorentz transformation cannot

change the sign of t.

Fourier transform. Now, we will Fourier transform the expression above to return to

the properties of Oω,k. The expression (2.3) is valid in any number of dimensions. We

define the quantity G(ω,k) by

〈0|Oω,kOω′,k′ |0〉 = G(ω,k)δ(ω + ω′)δd−1(k + k
′)

where we used the time and space translational invariance of the 2-point function (2.4).

We have

G(ω,k) =

∫
dtdd−1

x

( −1

(t− iǫ)2 − x2

)∆

eiωt−ik·x (2.5)

The analytic structure of the integrand in the t-plane is shown in figure 1a. Note that

there are two branch cuts, both of which lie in the upper half plane.

Let us do the t integral first. Note that this integral can be taken to have a branch cut

running from (iǫ+ |x|, iǫ+∞) and another one from (iǫ−∞, iǫ− |x|). In the case where

ω < 0, we can close the t-contour in the lower half plane, and since there are no singularities
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|x|−|x|

∞ + iǫ−∞ + iǫ

(a) Analytic structure.

|x|−|x|

(b) Contour of integration.

Figure 1. Wightman function.

in that region, we just get 0. Now, by the remark above, (2.5) is invariant under Lorentz

transformations that are continuously connected to the identity. If k2 − ω2 > 0, then by

using such a transformation, we can make the time component of the momentum d-vector

negative. This immediately tells us that we need to consider (2.5) only for vectors that have

ω > 0, and ω2 − k
2 > 0

We can now transform the t-integral in (2.5) by deforming the original contour, which

runs along the real axis to the contour shown in 1b. Considering the various phases along

the legs of this contour carefully, we see that this is just

G(ω,k) = 2
(
eiπ∆ − e−iπ∆

) ∫
dd−1

x

∫ ∞

t=|x|

eiωt−ik·x

|t2 − x2|∆dt, (2.6)

We now change coordinates to: ρ2 = t2−x
2, and write t = ρ cosh ζ, |x| = ρ sinh ζ. We also

choose a frame where the vector (ω,k) → (
√
ω2 − k

2, 0, 0, . . .). We can then rewrite (2.6) as

G(ω,k) = θ(ω)θ(ω2 − k
2)2
(
eiπ∆ − e−iπ∆

)
Vd−2

∫
ei
√

ω2−k2ρ cosh ζ

ρ2∆
ρd−1dρ sinh(ζ)d−1dζ

≡ N∆,d θ(ω)θ(ω
2 − k

2)(ω2 − k
2)∆−d/2

where Vd−2 is the volume of the d− 2-sphere and N∆,d is an irrelevant non-zero numerical

constant that comes from the integral over ζ and ρ.

Notice that this implies that the modes Oω,k with positive ω annihilate the vacuum,

while the modes O−ω,−k and ω > 0, when acting on the vacuum, create excitations of

energy ω and momentum k. Moreover, in the vacuum, we have for the commutator

〈0|[Oω,k,Oω′,k′ ]|0〉 = G(|ω|,k) sgn(ω) δ(ω + ω′) δd−1(k + k
′),

In fact, large N factorization (2.1) implies that the right hand side of the equation above is

unchanged if replace the vacuum by any normalized state |S〉 that is created by the action

of only a finite number of insertions of O.

At subleading orders in N , the spacelike modes of O are relevant, and they do not

satisfy the algebra above. This implies that if we consider the Wightman two-point function

in a state with an energy that scales with N (like a big black hole), then these relations

stop holding as we will find below.
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However, the calculation above tells us that

At leading order in 1
N , while computing finite-point correlators of Oω,k about

the vacuum, we can neglect the spacelike modes of Oω,k.

Moreover, if we define the operators (for ω > 0 and |k|2 > 0)

Ôω,k =
Oω,k√
G(ω,k)

,

Ô†
ω,k =

O−ω,−k√
G(ω,k)

,

then these operators (inserted between states |S〉 made out of finite number of insertions

of O) just satisfy the algebra of free oscillators

[Ôω,k, Ô
†
ω′,k′ ] = δ(ω − ω′)δd−1(k − k

′).

Physically this means that the excitations created by the action of the generalized free

field O have the structure of a freely generated Fock space. However, these excitations

are qualitatively different from those created by an ordinary free field. In the case of an

ordinary free field φ on the boundary, the excitations are simply labeled by the d− 1 com-

ponents of their spatial momentum k, while their energy is determined by ω =
√
k
2 +m2.

This dispersion relation follows from the equation of motion that the ordinary free field

satisfies (for example �φ = m2φ). In contrast, the excitations created by a generalized free

field O are labeled by d independent numbers, namely k and ω. Except for the condition

that ω2 > k
2, there is no constraint among them, i.e. no dispersion relation, because the

generalized free field O does not satisfy any wave equation on the boundary. In a sense

that we will make precise in the next subsection, the excitations created by a generalized

free field can be reorganized as the excitations of an ordinary free field living in a higher

dimensional (AdS) spacetime.

From now on, we will take ω to be positive and will always work with positive frequency

modes, that is, instead of writing O−ω,−k we will write O†
ω,k.

2.2 Local operators on the Poincare patch

Now, consider AdSd+1 in the Poincare patch with geometry

ds2 =
−dt2 + dx2 + dz2

z2
. (2.7)

Notice that we are working in units where the AdS radius is set to one. We consider a free

massive scalar field propagating on this background. The equation of motion of this field is

(�−m2)φ = 0 (2.8)

It is quite easy to solve (2.8). The standard solution is in terms of Bessel functions and

the normalizable mode is

ξω,k(t,x, z) = e−iωt+ik·xΓ(1 + ν)

Υ

(
2√

ω2 − k
2

)ν

zd/2Jν(
√
ω2 − k

2z), (2.9)
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where ν =
√
m2 + d2/4. We have chosen the overall normalization of the mode such that

it behaves like Υ−1 × z∆ × e−iωt+ik·x near the boundary z = 0, and we have ∆ = ν + d/2.

We will also take

Υ = (2π)
d
2

√

2
Γ(∆− d

2 + 1)π
d
2

Γ(∆)
, (2.10)

for later convenience.

Notice that it is possible to find normalizable modes which do not blow up at the

Poincare horizon only if ω2 ≥ k
2 i.e. there are no normalizable modes with spacelike mo-

mentum along the boundary directions. This is consistent with the fact that at large N the

spacelike Fourier modes Oω,k can not create any excitations when acting on the vacuum,

as we found above.

We can now easily write down a (nonlocal) CFT operator, which behaves like a local

field in the Poincare patch. This is simply given by

φCFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d

[
Oω,k ξω,k(t,x, z) +O†

ω,k ξ
∗
ω,k(t,x, z)

]
(2.11)

We use the subscript CFT to emphasize that while φCFT seems to depend on all AdS coor-

dinates (t,x, z) it is still an operator in the conformal field theory, though clearly non-local.

From the point of view of the CFT, the coordinate z is in a sense “auxiliary”. It simply

parameterizes how exactly we have smeared the boundary operator O(t,x) to reproduce

the nonlocal operator φCFT(t,x, z).

The main point here is that since φCFT has exactly the same expansion as that of a

free massive field in AdS, it necessarily behaves — at large N — like a local field in the

“emergent” AdS space, which is constructed by the boundary coordinates t,x together

with the parameter z and equipped with the metric (2.7). For example, with the choice

in (2.10), we have2

[φCFT(t,x, z), φ̇CFT(t,x
′, z′)] =

i

(2π)d
δd−1(x− x

′)δ(z − z′)zd−1. (2.12)

Moreover, the action of the conformal transformations on O(t,x) generates just an action

of the isometries of AdS on φCFT(t,x, z).

2.3 Local operators behind the Poincare horizon

So far what we have done is not surprising, and was already done in the works cited at the

beginning of the subsection 2.1. We now show how it is possible to construct local fields

on global AdS using these modes.

Figure 2 shows two ways in which this may be done. In the method indicated in 2a,

we first construct local operators on a Cauchy slice that lies entirely within the Poincare

patch. We then use the equations of motion to evolve these operators forward in global

AdS time beyond the Poincare patch. In practice, to write down an explicit local field

2Our unusual choice for the normalization of this field has to do with the fact that we wanted to remove

factors of 2π from our momentum mode commutators.
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(a) Global time slices. (b) Poincare time slices.

Figure 2. Local operators in global AdS using the boundary of the Poincare patch.

like (2.11), we would need to do a Bogoliubov transform from the solutions to the wave

equation given in (2.9) that have a well defined energy with respect to Poincare time to

solutions that have a well defined energy with respect to global AdS time.

It is simpler to write down explicit operators using the method indicated in figure 2b.

We can quantize a field in global AdS using the sequence of spacelike slices shown there.

There is a natural continuation of these slices beyond the future horizon. We now demon-

strate this construction more precisely.

Consider global AdS written in coordinates

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
d−1

The d − 1 sphere that enters here can be parameterized in terms of d − 1 angles and

embedded in Rd through (Ω1,Ω2, . . .Ωd) = (cos θ1, sin θ1 cos θ2, . . . sin θ1 sin θ2 . . . sin θd−1).

(If d is even, then the last entry has a cos θd instead but this detail is not relevant below.)

To motivate our construction of operators in this space, we write

t =
cosh ρ sin τ

cos τ cosh ρ+ cos θ1 sinh ρ

xi =
Ωi+1 sinh ρ

cos τ cosh ρ+ cos θ1 sinh ρ
, i = 1 . . . d− 1

z =
1

cos τ cosh ρ+ cos θ1 sinh ρ

(2.13)

The boundary, which is at z = 0 is clearly at ρ = ∞. The horizon, which is z = ∞ is

defined by the equation

cos τ cosh ρ+ sin θ1 sinh ρ = 0.

At the boundary, the coordinate change between t,x and τ,Ωi is

t =
sin τ

cos τ + sin θ1
, xi =

Ωi+1

cos τ + sin θ1
.

Now we analytically continue our solutions from the Poincare patch to all of global AdS.

We take the solutions given in (2.9) and substitute the coordinate transformation (2.13).

– 10 –



J
H
E
P
1
0
(
2
0
1
3
)
2
1
2

So, in global coordinates we write the solution

ξω,k(τ, ρ,Ωi) = e−iωt(τ,ρ,Ωi)eik·x(τ,ρ,Ωi)
Γ(1 + ν)

Υ

(
2√

ω2 − k
2

)ν

× z(τ, ρ,Ωi))
d
2Jν(

√
ω2 − k

2z(τ, ρ,Ωi)),

where the functions t(ρ, τ,Ωi),x(ρ, τ,Ωi), z(ρ, τ,Ωi) are given by (2.13). There is a small

subtlety regarding a phase that we need to be careful about.

When we cross z = 0, and go to negative z, we pick up a phase. This is because

Jν(−x) = eiπνJν(x).

As we cross the next horizon, we should then pick up a net phase of e2πiν .

With this convention, we can write down local operators in global AdS simply as

φCFT(τ, ρ,Ωi) =

∫

ω>0

dωdd−1
k

(2π)d

[
Oω,k ξω,k(τ, ρ,Ωi) +O†

ω,k ξ
∗
ω,k(τ, ρ,Ωi)

]
(2.14)

The fields that we get by this construction are clearly periodic in the Poincare patch up to

a phase. However, this is consistent with the fact that the equations of motion require φ

to be periodic in global time, up to a phase.

It is also easy to see that if we take the limit of this operator

lim
ρ→∞

[
Υ eρ∆ φCFT(τ, ρ,Ωi)

]
= Og(τ,Ωi)

where Og is nothing but the continuation of the operator O from Minkowski space to its

infinite sheeted covering that is conformal to S
d−1 × R and we remind the reader that the

normalization factor Υ is given in (2.10). In fact, many years ago Luscher and Mack [65]

showed that the correlation functions of the CFT on R
d−1,1 could be continued to S

d−1×R.

This continuation can also be done, by first continuing to Euclidean space, and then con-

tinuing back to get the space S
d−1 × R.

Continuing the CFT from R
d−1,1 to S

d−1
× R. For the benefit of the reader, we

briefly review how CFTs can be continued from Minkowski space to S
d−1 ×R. The reader

who is already familiar with this topic can skip to the next subsection, which has a “dis-

cussion” of the implications of our construction.

This extension is described very clearly in [66]. (see pp. 37–39.). We focus on the time

coordinate t and the spatial radial coordinate r of Minkowski space. Let us compactify it

down to the triangle by writing r ± t = tan(θ ± τ). This maps a triangle in the τ, θ patch

to the full t, r plane. Writing u± = r ± t, we find that

∂

∂τ
=

1

2

[
(1 + u2+)

∂

∂u+
+ (1 + u2−)

∂

∂u−

]
] =

1

2
(P0 +K0) ,

If we take our Hamiltonian to be 1
2 (P0 +K0), then this Hamiltonian generates translations

in τ . In the τ, θ plane we can continue correlators past the edges of the triangle onto the

whole cylinder.
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There is another way to understand why it is this quantity that should be used as

the Hamiltonian when we go from R
d−1,1 to S

d−1 × R. The basic point is that we can

understand the action of the conformal algebra on the Hilbert space of the Lorentzian

theory, by cutting up the Euclidean path integral that defines the theory in different ways.

The boundary Euclidean path integral can be performed on R
d (or after adding a point at

infinity on S
d). We can cut this space either as Rd−1 × R or as Sd−1 × R.3

The Hilbert space that we get in these two ways is different, although the theories are

isomorphic. In the Rd−1×R slicing, states are defined by inserting an operator at Euclidean

time −∞ and doing the path integral up to 0. In the S
d−1 × R slicing, states are defined

by inserting an operator at the origin and doing the path integral out to unit radius.

The dual of a state is defined, in the flat-space slicing, by inserting an operator at

Euclidean time +∞ and doing the path integral back to 0; in the S
d−1 × R slicing by

inserting an operator at ∞ and do the path integral back to the unit sphere.

Consequently, the definition of the adjoint is different as well. In the flat-space slicing,

the adjoint operation clearly leads to the hermiticity conditions

P †
i = Pi; P †

0 = −P0; K†
i = Ki; K†

0 = −K0.

The minus sign for the time component comes, in this language, because the mapping from

bras to kets involves taking teuclidean → −teuclidean. Here, the i component runs only over

spatial indices. The algebra that we get in this manner from the Euclidean path integral

is isomorphic to the group SO(d, 2), with the usual hermiticity conditions.

On the other hand, in the S
d−1 × R slicing, the mapping from bras to kets involves

taking |x| → 1
|x| . So, the adjoint of a translation involves an inversion followed by a

translation and another inversion. This leads to the Hermiticity conditions

P †
µ = Kµ.

Hence, we get two different relations for the adjoint by changing the inner-product.

Now, instead of changing the inner product we can instead do a similarity transform

on the operators, and keep the inner product fixed. This similarity transform is given in

detail in [67]. (See section 2.1.) This gives rise to the relation that the dilatation operator

in the S
d−1 × R slicing is related to the operators in the R

d−1 × R slicing through

DSd−1
=
i

2
(PRd−1

0 +KRd−1

0 ),

This operator is anti-hermitian, just like P0 above but when we Wick rotate, we get the

hermitian Hamiltonian above.

Discussion. Note that, from the point of a view of a CFT that lives on the boundary of

Poincare AdS, this construction seems a little surprising. A common, but incorrect, belief

is that this CFT has only partial information about global AdS. To the contrary, as we

have shown above, the CFT gives us all bulk correlators in global AdS.

3Note that both Minkowski space and the space S
d−1 × R give the same space upon Euclidean

continuation.
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We have also encountered the objection that “if someone were to turn on a source of

change the Hamiltonian somewhere in global AdS beyond the Poincare patch, how would

the flat-space CFT know about this”? Indeed, the CFT would not be able to account for

such a “divine intervention” but we emphasize that this objection could also have been

raised in the original Poincare patch. If we were to change the Hamiltonian somewhere in

the bulk, this would simply change the theory away from the original CFT and without

further information, we would not be able to compute these new correlators.

So, our flat-space CFT describes a specific theory on the Poincare patch, and a specific

theory on global AdS. It can also describe small deformations away from this theory, such

as those obtained by turning on sources in the bulk since the effect of these sources can

be captured by a power series expansion in the original correlators. It cannot account for

arbitrary changes to the Hamiltonian but this is not unusual and holds for all examples of

the AdS/CFT correspondence.

3 Black holes in AdS: setup and review

Just as we did for the CFT in its vacuum state, we would now like to re-organize the

degrees of freedom of the CFT, in a heavy typical pure state, into degrees of freedom that

resemble perturbative fields propagating on an AdS black hole background.

As we have explained in the introduction, our setup is that we start with the CFT in

a pure state and then allow it to “settle down” so that it resembles a thermal state more

and more. When this happens, we find that the CFT describes fields propagating in, what

is called, the “eternal AdS black hole.”

Maldacena [44] explained that the eternal AdS black hole has a holographic description

in terms of two copies of a CFT in a specific entangled quantum state. In this paper, the

eternal black hole geometry will emerge as an auxiliary device for computations done in a

single CFT!

In fact, this is not so surprising from the naive semi-classical perspective since it is

indeed true that quantum fields on a collapsing star start behaving like those in an eternal

black hole background, if we probe the geometry “late enough.” We review these ideas

from semi-classical General Relativity in some detail below and we also review the basic

formalism of quantizing fields in a black hole background. The reader who is familiar with

these topics, or is willing to accept our claims, can jump directly to section 4.

We wish to emphasize an important logical point. In our construction in sections 4

and 5, we will not assume any of the claims that we are making in this section. Rather

one of the points of our paper is that we independently find a picture in the conformal

field theory which is consistent with the expectations of conventional semi-classical physics.

Our review below is meant to (a) remind the reader what these expectations are and (b)

serve as a guide — although not as a logical crutch — for our later construction.

3.1 Collapsing stars and eternal black holes

In the first part of this section, we review the semi-classical expectation that the details of

a collapsing star cease to matter both in front and behind the horizon for “late enough”

times. More specifically, and referring to figure 3 we have

– 13 –



J
H
E
P
1
0
(
2
0
1
3
)
2
1
2

A

B

t0

(a)

Collapse of a star (red) to form

a black hole in AdS. The matter

is injected from the boundary at

some time t0. A local observer

(black line) dives in much later.

IIII

II

IV

(b)

AdS eternal black hole , repro-

duces the measurements of the

observer at late times. The

quantum fields are placed in the

AdS-Hartle-Hawking vacuum.

Figure 3. Collapse vs eternal black hole in AdS.

Semi-classical expectation: late time bulk correlators in region A and region B of the

collapsing star geometry, can be well approximated by correlators in region I and region II

respectively of the eternal black hole.

Here when we say late, we mean late enough so that all the matter has fallen into

the black hole and that the fluctuations of the horizon (quasi-normal modes) have mostly

decayed away, but not so late that quantum mechanical effects become important. The

two timescales have different parametric dependence on N (or ~) so they can be clearly

separated.

For asymptotically flat black holes this claim holds when the eternal black hole is taken

in the Unruh vacuum. For black holes formed in AdS — for instance, by throwing in matter

from infinity as in figure 3a, — the claim holds when the AdS eternal black hole is taken in

the Hartle-Hawking vacuum.4 These results are of course very well known in the context

of flat space [68–70] and we believe that they extend naturally to the case of AdS.

The claim that the geometry outside the black-hole “settles down” is probably famil-

iar to most readers; the claim that, at late times, we can replace the entire history of the

collapse in region B in figure 3a by an effective Kruskal geometry is probably less familiar.

However, the intuitive justification for these statements is the same and can be seen in the

Kruskal diagram in figure 4.

Within geometric optics, an early-time observer (Observer E) can influence the late-

time observer (Observer L) only by emitting a photon or another particle that travels along

a trajectory that intersects the world-line of L. However, as L dives in later and later, the

window and the solid angle within which E must send his signal becomes smaller and

smaller.5

4The boundary of AdS acts like a reflecting wall, so the radiation coming out of the black hole eventually

turns around and falls back in. The Hartle-Hawking state describes an equilibrium configuration where there

is no net flux of energy. There is no AdS analogue of the Unruh vacuum.
5Among other places, this fact was discussed in the works [70–72] in relation to the consistency between

black hole complementarity and the absence of quantum cloning.
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Figure 4. Kruskal diagram of AdS eternal black hole. As the observer (L) dives in later, it gets

increasingly difficult for any signal from an earlier observer (E) to reach him.

This geometric-optics observation can easily be extrapolated to classical wave mechan-

ics. If we consider a source that emits energy within some solid angle then if we keep the

power of the source fixed, its influence at late times diminishes. So, perturbatively, it is clear

that a disturbance in the Kruskal geometry at early times cannot influence the late time

physics either in front or behind the horizon. The argument that the details of the collapse

itself do not matter at late times is an extrapolation from this perturbative argument.

Notice that if we fix the time at which the observer L falls in, it is always possible to turn

on some matter-excitations which influences the observer. However, these configurations

— while they may be solutions to the equations of motion — are not relevant as approxi-

mations to the geometry of the collapsing black hole. In our case, as we show in the figure,

we create a black hole by turning on a source on the boundary, wait a “sufficient” time, and

throw the observer L in. By the arguments above, the semi-classical expectation is that this

observer should just perceive the geometry of an eternal black hole all along his world line.

One subtle point is that the existence of region III cannot be neglected in region II.

This is because, while classically no influence can propagate from region III to region II

and influence the late time observer in figure 3b, when we quantize the field in region II

then, even at late times, it has both “left-moving modes” that are analytic continuations

of modes from region I and “right moving modes” that are analytic continuations of modes

from region III. We return to this in section 3.3.

We emphasize again that in our construction, we will not assume either this feature

of the quantum mechanics on the eternal AdS spacetime, or the semi-classical general rel-

ativity expectation above. Rather we will find both independently in the dual conformal

field theory.

3.2 Classical properties of the AdS eternal black hole

The AdS eternal black hole that we have drawn in figure 3b is a maximal continuation

of the AdS-Schwarzschild black hole, just like the Kruskal geometry is a continuation of

the Schwarzschild geometry. In this section, we review the metric and geometry of this

space in some more detail. We will work with the planar version of AdS black holes
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(i.e. branes). It is straightforward to rewrite everything in terms of AdS black holes with

spherical event horizons — this is even necessary if we wish to address questions related to

Poincare recurrence, and other finite volume effects. In this paper, we did not do so since

it was more convenient to work with momenta k rather than spherical harmonics.

The metric of the eternal AdS black brane is given by

ds2 =
ℓ2

z2

[
−h(z)dt2 + 1

h(z)
dz2 + dx2

]
, (3.1)

where

h(z) = 1− zd

zd0
.

The horizon is at z = z0, the boundary at z = 0 and x is a (d − 1)-dimensional vector.

There is no flux turned on here. The metric (3.1) is a solution to the equations of motion

for the action

S =
−1

16πGN

∫ √−g
[
R+

d(d− 1)

ℓ2

]
.

We have displayed the AdS radius ℓ explicitly here because it will make a brief appearance

in our discussion of the temperature below. However, in what follows, and everywhere else,

we will set ℓ = 1.

We introduce the tortoise coordinate defined by dz∗
dz = −h−1(z). Now the horizon is at

z∗ → −∞. We fix the overall additive ambiguity in the definition of z∗ by requiring z∗ → 0

as z → 0. The metric takes the form

ds2 =
h(z)

z2
(−dt2 + dz2∗) +

dx2

z2

We go to lightcone coordinates

u = t− z∗ , v = t+ z∗ (3.2)

ds2 = −h(z)
z2

dudv +
dx2

z2

Here z is defined implicitly via u, v by the previous changes of coordinates. Finally we define

U = −e−
du
2z0 , V = e

dv
2z0 (3.3)

to get

ds2 =
4h(z)

d2UV

(z0
z

)2
dUdV +

dx2

z2
(3.4)

This metric is originally defined in the region U < 0, V > 0. The future horizon is at

U → 0, V = constant and the past horizon at V → 0, U = constant. In the form (3.4), it is

clear that the metric is smooth at both these horizons and can be smoothly extended past

them.6 On the other hand there is a specific positive value of UV for which h blows up (in

our conventions for z∗ this happens at UV = e−π). These points represent the future and

past singularities.

6Near the horizons we have h ≈ d
z0
(z0 − z). The tortoise coordinate is z∗ ≈ z0

d
log

(

z0−z
z0

)

. From the

change of coordinates we find h ≈ de
dz∗

z0 = dUV.
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U=0V=0

ΣIΣIII

Figure 5. Cauchy slice for the eternal AdS black brane geometry.

How we take the large N limit. Let us pause briefly to specify precisely what we mean

by taking the large N limit in the context of this bulk geometry. Although this is a point

that seems to cause confusion at times, what we are doing is perfectly conventional. In

taking the large N limit, we keep the solution (3.1) fixed. This means that the temperature

of the gauge theory also remains fixed and does not scale with N . Indeed, the temperature

of the black-brane solution (3.1) can easily be calculated to be (with all factors restored)

T =
~cd

4πz0kB
,

where c is the speed of light and kB is the Boltzmann constant. Note that GN does not

appear here. On the other hand, with this fixed temperature, the ADM mass-density of

the black-brane will contain a factor of 1
GN

. So the energy density of the boundary CFT

does scale with N , as we take the large N limit.

We should point out that ℓ also does not appear in the formula for the temperature.

This is because we are considering the black-brane solution in AdS. If we were to instead

consider the AdS-Schwarzschild solution, then the temperature would depend on ℓ. Instead

of thinking of a black-brane, the reader may instead prefer to think of a big black hole in AdS

i.e. one where the horizon size is larger than the AdS radius. Such a black-hole is thermody-

namically favoured, since the corresponding temperature is higher than the Hawking-Page

transition temperature. So, for the conformal field theory on a sphere on radius R, our

analysis is valid when we take the temperature to be any number larger than the phase

transition temperature in units of 1
R , as long as the temperature does not scale with N .

3.3 Quantization in an eternal AdS black hole

We also need to remind the reader how to quantize a field on the background of an eternal

AdS black hole. In figure 5 we see a Cauchy slice for the entire spacetime. It can be

thought of as the union of two smaller slices, denoted as ΣI and ΣIII. The slice ΣI is a

complete Cauchy slice if we restrict ourselves to events taking place in region I and the

– 17 –



J
H
E
P
1
0
(
2
0
1
3
)
2
1
2

slice ΣIII for events in region III. However in order to describe regions II and IV we need

the entire slice ΣI ⊕ ΣIII. When we quantize the field in AdS we impose normalizable

boundary conditions at infinity. This means that only the subleading mode (“the vev”) of

the field can be turned on. For simplicity we avoid discussing the window of masses where

two alternative quantizations are acceptable.

One way to find a complete set of solutions to be used for the quantization, is to first

work with the wedge I, whose Cauchy slice is ΣI , and then with the wedge III and then

put them together (the same thing as we do for the quantization of Rindler space or the

flat space Schwarzschild solution). So we start with region I. We consider the black hole

solution (3.1) and a scalar field obeying

(�−m2)φ = 0

we consider a solution of the form

fω,k(t,x, z) = e−iωt+ik·xψω,k(z)

Plugging into the Klein-Gordon equation we get a second order ordinary differential equa-

tion for ψω,k(z). It has two linearly independent solutions. We impose normalizability of

the solution near the boundary i.e.

ψω,k(z) −→
z→0

Υ−1 z∆,

which eliminates one linear combination of the solutions. So, for each choice of (ω,k) we

have a unique normalizable solution.

We do not impose any boundary conditions at the horizon. Had we imposed ingoing

boundary conditions we would have found solutions only for complex ω i.e. the quasinormal

frequencies. For the quantization of the field we need to find a complete set of solutions of

the wave equation without any restriction on the horizon. The solutions that we found are

linear combinations of ingoing and outgoing modes. By an appropriate choice of the overall

phase, the modes can be taken to be real. If we introduce the tortoise radial coordinate

z∗, in which the horizon is at z∗ → −∞ we find that the modes behave like

ψω,k −→
z→z0

c(ω,k)
(
e−iδω,ke−iωz∗ + eiδω,keiωz∗

)
(3.5)

where c(ω,k) is a positive real constant. The relative phase difference eiδω,k is physically

meaningful and cannot be removed by changing the conventions.

It is also possible to normalize the modes, so that they are canonical with respect to

the Klein-Gordon norm. In this second normalization, we write

f̂ω,k(t,x, z) = e−iωt+ik·xψ̂ω,k(z),

where

ψ̂ω,k −→
z→z0

z
d−1
2

0 × (e−iδω,ke−iωz∗ + eiδω,keiωz∗),

ψ̂ω,k −→
z→0

c(ω,k)−1z
d−1
2

0 z∆
1

Υ
.
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This notation, where modes that go like “1” near the boundary are denoted by fω,k(t,x, z)

and those that go like “1” near the horizon are denoted by f̂ω,k(t,x, z) will be used below.

In any case, we have found a complete set of solutions of the Klein-Gordon equation

for region I which can be used to expand the quantum field φ in region I in creation and

annihilation modes

φ(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d
1√
2ω

[
aω,kf̂ω,k(t,x, z) + h.c.

]

The modes satisfy the standard commutation relations

[aω,k, a
†
ω′,k′ ] = δ(ω − ω′)δd−1(k − k

′)

with all other commutators vanishing.

Notice that the spectrum in ω is continuous. This does not have to do with the non-

compactness of the spatial directions, even if we consider a black hole in global AdS we still

find a continuous spectrum in ω — even though the boundary theory lives on a compact

space S
d−1. The continuum in ω is a large N artifact and related to the approximately

continuous spectrum of the dual large N gauge theory in the deconfined phase, see [52, 55]

for more details.

Following the same analysis in region III we get another set of creation and annihila-

tion modes that we denote by ãω,k. These modes satisfy an identical-oscillator type algebra

among themselves, and commute with all the modes aω,k. If we have the expansion of the

field in a complete basis both in regions I and III, it is straightforward to extend it to

regions II and IV.

While it should be obvious from figure 5, we would like to emphasize again that in

order to describe a local field in region II (inside the black hole) it is necessary to use both

the operators aω,k which are visible outside the horizon and the operators ãω,k which seem

to come from region III.

Finally let us mention that the natural vacuum for a quantum field in AdS in the pres-

ence of a big AdS black hole is the analogue of the Hartle-Hawking vacuum. The Hawking

radiation from the black holes is reflected by the AdS potential and an equilibrium state

like that of the flat-space Hartle Hawking state is reached (there is no analogue of the

Unruh vacuum). In terms of our oscillators the Hartle Hawking state is characterized by

thermal occupation levels

〈aω,k a†ω′,k′〉HH =
eβω

eβω − 1
δ(ω − ω′)δd−1(k − k

′) (3.6)

〈a†ω,k aω′,k′〉HH =
1

eβω − 1
δ(ω − ω′)δd−1(k − k

′) (3.7)

and similar for the modes ãω,k. Here β is the Hawking temperature of the black hole (3.1).
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4 Reconstructing the black hole from the boundary, outside the horizon

We will now try to reconstruct the black hole geometry from the boundary. In AdS/CFT

we have the following identifications between the boundary CFT and the bulk

Thermalization of pure state ⇔ Black hole formation by gravitational collapse

Thermal density matrix ⇔ Eternal black hole

In the same way that the collapsing star can be approximated for certain questions by the

eternal black hole, we expect that late time7 CFT correlation functions on a heavy pure

state can be approximated by correlation functions on a thermal density matrix.

Hence, we will first focus on thermal correlators and explain how to represent local

bulk operators in the case where the boundary theory is in a thermal density matrix. We

will then carry over this definition of the operator (at large N) to the case where we have

a typical pure state. We will discuss the validity of this approach and possible non-trivial

sensitivity on the specific pure state in section 7.

4.1 Boundary thermal correlators

4.1.1 Large N factorization at finite T

Let us consider a scalar conformal primary operator O. For simplicity we assume that

its thermal 1-point function Tr(ρO) vanishes, where ρ = e−βH . This can be ensured by

considering a theory with a Z2 symmetry, under which O is odd.

A central assumption in what follows is that large N factorization holds for thermal

correlation functions i.e. that we have the analogue of (2.1)

Tr(ρO(x1) . . .O(x2n)) =
1

2n

∑

π

Tr(ρO(xπ1)O(xπ2)) . . .Tr(ρO(xπ2n−1)O(xπ2n)) + . . . ,

where the dots are terms that are subleading in 1
N . Of course the 2-point function

Tr(ρO(x1)O(x2)) in which the thermal correlators factorize into is completely different

from the zero temperature 2-point function 〈0|O(x1)O(x2)|0〉. Also, we need to stress that

— as in the zero temperature case — there are several caveats about the validity of fac-

torization. We should be careful to first fix all other parameters/numbers that enter the

correlator and then take N to infinity. For example, factorization can fail if

• We scale the number of operators (i.e. n in the formula above) with some power of N .

Scaling the number of external legs with powers of N invalidates the naive ’t Hooft

counting and a priori we have no reason to expect the correlator to still factorize.

• We scale the conformal dimension of O in anN -dependent way — the same comments

as above apply.

7As in the bulk, by late we mean after the thermalization has occurred, but not too late so that Poincare

recurrences and other finite N effects become important.
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• We scale some of the distances |xi−xk| to be too small, in an N -dependent way (this

can be thought of as a high energy scattering, where higher and higher loops in 1/N

become important).

• We scale the temperature in a N -dependent way. (See the paragraph in section 3.2

for more details.)

• We scale (some of) the distances |xi−xj | to increase in an N -dependent fashion. This

will be particularly important when we consider the operators evaluated on typical

pure states vs the thermal ensemble.

Of course this list is not supposed to be exhaustive. In general we have to be careful about

how various factors in the problem scale, when taking the large N limit.

4.1.2 Analytic structure of thermal 2-point functions

We now discuss general properties on finite temperature Wightman functions. Since cor-

relators at large N factorize to products of 2-point functions, we will focus on the latter.

Consider two local operators O1,O2. From time and space translational invariance of

the thermal ensemble we only need

F12(t) ≡ Z−1
β Tr

(
e−βHO1(t,x)O2(0,0)

)
,

where we did not indicate the x dependence on the l.h.s. . Here

Zβ = Tr
[
e−βH

]
,

is the partition function which will appear frequently below. Since the operators do not

generally commute, we also have a related function

F21(t) ≡ Z−1
β Tr

(
e−βHO2(0,0)O1(t,x)

)
.

Let us keep x fixed and analytically continue t to complex values. By inserting a complete

set of states and using the positivity of the energy spectrum we find that the analytically

continued function F12(t) is meromorphic in the strip

−β < Im t < 0.

However, in general, it cannot be analytically continued to positive values of Im t. The

function F21(t) can be analytically continued to positive imaginary values of t and is mero-

morphic in the strip

0 < Im t < β.

The value of the function F12(t) for real t is equal to the limit of the meromorphic

function in the strip −β < Imt < 0, as we take Imt → 0− from below. As we approach

the other end of the strip from above (i.e. Imt→ −β−) and by inserting a complete set of

states and using the cyclicity of the trace we derive the so called KMS condition

F12(t− iβ−) = F21(t). (4.1)
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So the correlator is periodic in imaginary time, up to an exchange in the order of the

insertion of operators.

The discussion so far has been very general and would apply to any quantum system at

finite temperature, even in non-relativistic quantum mechanics. In relativistic QFT we have

an important additional property: local operators at spacelike separation commute. This

means that the functions F12(t) and F21(t) must have the same value along the segment of

the real axis −|x| < t < |x| and hence one must be the analytic continuation of the other!

For t > |x| we generally have limIm t→0− F12(t) 6= limIm t→0+ F21(t) and this discontinuity

is proportional to the (thermal expectation value of the) commutator of the two operators.

Because of the KMS condition this discontinuity appears periodically along all semi-infinite

lines t = ±(|x|+R+) + imβ where R+ denotes positive real numbers and m ∈ Z.

Hence, by combining the KMS condition with the spacelike commutativity of local

fields we have arrived at the following important conclusion: consider the domain D of the

complexified t-plane defined as C minus “cuts” starting from ±|x| + imβ and extending

all the way to infinity parallel to the real axis, as depicted in figure 6. This domain D
is a simply-connected domain. Then, there is a holomorphic function F(z) defined in the

domain D with the property that

F(z + iβ) = F(z),

for all z ∈ D and also

lim
ǫ→0+

F(t− iǫ) = F12(t), (4.2)

lim
ǫ→0+

F(t+ iǫ) = F21(t). (4.3)

The holomorphic function F contains all the information about the 2-point function of

operators O1,O2 for both possible orderings.

We mentioned that generally F12(t) cannot be analytically continued to complex t with

positive imaginary part by going through the part of the positive real axis with t > |x|
(i.e. the analytic continuation is possible only by going around, and through the “spacelike

segment” −|x| < t < |x|). While this is indeed generic, it is not always true: there

are quantum systems (for example a free QFT) whose thermal 2-point function can be

analytically continued up through the part of the positive real axis with t > |x|. However
even in that case, the analytic continuation of the function through what used to be the

“cut” of the domain D does not lead to the same value as the one that we would get by going

through the “spacelike segment” which lies purely within the domain D. In other words the

correlation functions analytically continued to complex times are generically multivalued

functions — and we have to specify the “sheet” on which we are evaluating them.

We will define the “principal sheet” of the analytically continued thermal correlators,

as the one defined by doing the continuation purely within the domain D described above.

This will be very important when we discuss the analytic continuation behind the horizon.

Let us emphasize this once more: whenever we write down a thermal correlator where

some of the time arguments have been given an imaginary value, the definition of this
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Figure 6. Domain of analyticity of a thermal 2-point function of the two local operators O1(t,x)

andO2(0,0). The domainD is defined as the complex plane with the indicated branch cuts removed.

On this domain we have a holomorphic function F(z) which satisfies F(z+iβ) = F(z). The function

F contains all information about the thermal 2-point function. For example, we have limǫ→0+ F(t−
iǫ) = Z−1

β Tr
(
e−βHO1(t,x)O2(0,0)

)
and also limǫ→0+ F(t + iǫ) = Z−1

β Tr
(
e−βHO2(0,0)O1(t,x)

)
.

The discontinuity along the branch cut is proportional to the thermal expectation value of the

commutator of the two operators.

analytically continued correlator is that one has to start with the correlator defined in

“real time” and then continue it to the complex values by working only in the domain D
and going “around” the cuts, through the Euclidean (spacelike) region.

After these generalities, let us return to the case where we are looking at the thermal

2-point function of a conformal primary O. From translational invariance in space and

time we only need the function

Gβ(t,x) = Z−1
β Tr

(
e−βHO(t,x)O(0,0)

)
,

we will also consider its Fourier transform

Gβ(ω,k) =

∫
dtdd−1

x eiωt−ikxGβ(t,x).

We have the following general properties. First, rotational invariance implies

Gβ(t,x) = Gβ(t,−x).

Second the KMS condition for the thermal trace implies

Gβ(t− iβ,x) = Gβ(−t,−x).
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In Fourier space the corresponding statements are

Gβ(ω,k) = Gβ(ω,−k),

Gβ(−ω,k) = e−βωGβ(ω,k).

These are exact properties which hold in all dimensions and arbitrary coupling.8 We can

explicitly verify them in the case of 2d CFT thermal real-time correlation functions, which

can be explicitly computed, as presented in appendix A.

4.1.3 Mode expansion of thermal 2-point function

Now we proceed by expanding the boundary field in its Fourier modes. For simplicity we

take the CFT to live in R
d−1,1 at finite temperature.9 We have

O(t,x) =

∫

ω>0

dωdd−1
k

(2π)d

(
Oω,ke

−iωt+ikx +O†
ω,ke

iωt−ikx
)

(4.4)

As before, this is the definition of the (non-local) operators Oω,k.

We can now consider the thermal 2-point function of O expanded in terms of its modes.

From translational invariance we immediately conclude that

Z−1
β Tr

(
e−βHOω,kOω′,k′

)
= Z−1

β Tr
(
e−βHO†

ω,kO
†
ω′,k′

)
= 0,

and for the other combinations we have

Z−1
β Tr

(
e−βHOω,kO†

ω′,k′

)
= Gβ(ω,k)δ(ω − ω′)δd−1(k − k

′),

Z−1
β Tr

(
e−βHO†

ω,kOω′,k′

)
= Gβ(−ω,−k)δ(ω − ω′)δd−1(k − k

′).

So for the thermal expectation value of the commutator we have

Z−1
β Tr

(
e−βH [Oω,k , O†

ω′,k′ ]
)
= (Gβ(ω,k)−Gβ(−ω,−k)) δ(ω − ω′) δd−1(k − k

′).

Actually, given large N factorization of the thermal correlators we can derive a more

general statement: the relations above hold even in the presence of other operators Tm
even if they are “composite”, as long as they are “light” and their scaling dimension does

not scale with N :

Tr
(
e−βHT1[Oω,k , Oω′,k′ ]T2

)
= Tr

(
e−βHT1[O†

ω,k , O
†
ω′,k′ ]T2

)
= 0,

Tr
(
e−βHT1[Oω,k , O†

ω′,k′ ]T2
)
= (Gβ(ω,k)−Gβ(−ω,−k)) δ(ω − ω′) δd−1(k − k

′) (4.5)

× Tr
(
e−βHT1T2

)
.

8Clearly the discussion in this section was also independent of large N .
9We could also do a similar analysis for the finite temperature CFT on S

d−1 × time, where we would

have to replace the k momenta with discrete spherical harmonic modes.
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The commutator (4.5) implies that the operators Oω,k behave like the creation and

annihilation operators of harmonic oscillators, though in an unconventional normalization.

We can rescale them and define operators

Ôω,k =
Oω,k

(Gβ(ω,k)−Gβ(−ω,−k))
1
2

, (4.6)

which have canonical commutation relations. If we compute the thermal expectation value

of the “occupation level” nω,k = Ô†
ω,kÔω,k for each of these oscillators we have

Z−1
β Tr

(
e−βHÔ†

ω,kÔω′,k′

)
=

Gβ(−ω,−k)

Gβ(ω,k)−Gβ(−ω,−k)
δ(ω − ω′)δd−1(k − k

′)

and we find using (4.2) and (4.3) that

Z−1
β Tr

(
e−βHÔ†

ω,kÔω′,k′

)
=

1

eβω − 1
δ(ω − ω′)δd−1(k − k

′), (4.7)

and similarly

Z−1
β Tr

(
e−βHÔω,kÔ†

ω′,k′

)
=

eβω

eβω − 1
δ(ω − ω′)δd−1(k − k

′), (4.8)

which is the standard occupation level for a harmonic oscillator of frequency ω when placed

at temperature β.

The physical interpretation of these results is that the modes (4.5) are the CFT ana-

logue of the AdS-Schwarzschild modes of a scalar field around a black hole in AdS that we

called aω,k in section 3.3 hence we have the natural identification

Ôω,k ⇔ aω,k

The CFT modes Ôω,k seem to be thermally populated at the Hawking temperature of

the black hole β, as we see in (4.7), (4.8). This is the CFT analogue of the “thermal

atmosphere” of the black hole that we discussed in the previous sections, for example in

equations (3.6), (3.7). In a sense, they can be thought of as a thermally excited gas of

glueballs, hovering around the quark-gluon plasma — though the interpretation may be

not fully accurate. More technically it means that, as expected, we get the occupation levels

determined by the AdS-Hartle-Hawking vacuum for the dual scalar field. It is interesting

that this result follows simply from general properties of thermal field theories together

with large N factorization and does not need any other assumptions about the coupling.

In particular the same conclusion would hold for the regime of small λ where the spacetime

and the dual black hole would be highly stringy. On the other hand, at finite N there is

no sense in which the excitations of Oω,k behave like a freely generated Fock space.

Also notice that, since these modes are — in a sense — fluctuations around a non

Lorentz invariant background we have no reason to expect that they will exist only for

timelike (ω,k). Indeed, as we see in appendix A for the special case of 2d CFTs where

we can compute Gβ(ω,k) analytically, we see that the modes exist for all values of (ω,k),

even spacelike ones.
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4.2 Properties of thermal Fourier modes

As we mentioned above, in a thermal state, the spacelike Fourier modes of our generalized

free fields do not vanish. The reader might be surprised by this, given that we argued in

section 2, using nothing but largeN factorization and conformal invariance, that correlators

involving the spacelike modes Oω,k should vanish at leading order in 1
N . The resolution

is the energy densities in the thermal state are O
(
N2
)
, and so the previous argument

breaks down. Nevertheless, as we will show below, even in the thermal state, it is true that

correlators involving operators with large spacelike momenta die off exponentially.

To see this, we note that

Gβ(ω,k) =

∫
dt dd−1

x eiωt−ik·xGβ(t,x)

= Vd−3

∫
dtdθd|x| eiωtGβ(t,x)|x|d−2ei|k||x| cos θ(sin(θ))d−3,

where Vd−3 is the volume of the (d−3)-sphere. Doing the θ integral, and using the rotational

invariance of Gβ(t,x), we find that

Gβ(ω,k) =
π2

5
2
− d

2Γ(d− 3)(|k|) 3
2
− d

2

Γ
(
d−3
2

) Vd−3

∫
dtd|x| eiωtGβ(t, |x|)|x|

d−1
2 J d−3

2
(|k||x|). (4.9)

Using the identity ∫ ∞

0
Jν(px)Jν(py)pdp =

1

x
δ(x− y),

we can rewrite (4.9) as

π2
5
2
− d

2Γ(d− 3)

Γ
(
d−3
2

) Vd−3|x|
d−3
2 Gβ(ω, |x|) =

∫ ∞

0
Gβ(ω, |k|)J d−3

2
(|k||x|)|k| d−1

2 d|k|. (4.10)

We will now show below that if we consider the function Gβ(ω, |x|) then we can continue

|x| into the upper half plane till Im(|x|) = β
2 . Since, for large |k| and Im(|x|) = β

2 the

Bessel function grows like e
β|k|
2 , we see that the integral in (4.10) can only converge if

Gβ(ω, |k|) dies off as e−
β|k|
2 for large |k| and fixed ω.

To see this analytic property, we write the thermal Green function as a sum over a

complete set of states (indexed both by |m〉 and |n〉 below)

Gβ(t, |x|) =
∑

m,n

〈m|e−βHO(t,x)|n〉〈n|O(0,0)|m〉

=
∑

m,n

e−βEme−i(En−Em)t+i(Pn−Pm)·x|〈m|O|n〉|2,
(4.11)

where we know, ahead of time, that the left hand side depends only on |x| although indi-

vidual terms on the right hand side depend on x. By Fourier transforming this expression

in time, we find that

Gβ(ω, |x|) =
∫
dteiωtGβ(t,x) =

∑

m,n

e−βEmδ(ω − En + Em)ei(Pn−Pm)·x|〈m|O|n〉|2.

– 26 –



J
H
E
P
1
0
(
2
0
1
3
)
2
1
2

Using the delta function we can rewrite this as

Gβ(ω, |x|) = eβω/2
∑

m,n

δ(ω − En + Em)e−βEm/2e−βEn/2ei(Pn−Pm)·x|〈m|O|n〉|2

= eβω/2
∑

m,n

δ(ω − En + Em)e−βEm/2e−βEn/2ei|Pn−Pm||x| cos θnm |〈m|O|n〉|2,
(4.12)

where θnm is the angle between P n − Pm and x.

Now, in a relativistic QFT, we have the “spectrum condition”: in addition to E ≥ 0 we

also have that E ≥ |P | for all states in the theory. Since by the triangle inequality, |Pm +

P n| ≤ |Pm|+ |P n|, we see from the expansion (4.12) that, viewed as a function of |x|, the
function Gβ(ω, |x|) can be continued in the positive imaginary direction till Im(|x|) = β

2 .

This concludes our proof that for large |k| and fixed ω, we have

Gβ(ω, |k|) −→
|k|→∞

e−
β|k|
2 .

In fact, this observation is very important in reconstructing local bulk observables in the

presence of a black hole as discuss in subsection 4.4.

4.3 Uplifting of fields and local bulk observables

We are now ready to construct local bulk observables outside the horizon of the black hole.

Let us consider bulk modes in the background of an AdS black hole (black brane) that

we defined in section 3.3 and which have the form fω,k(t,x, z) = e−iωt+ikxψω,k(z) and

normalized so that ψω,k ∼ 1
Υz

∆ as z → 0. Then we construct the operator

φCFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d

[
Oω,k fω,k(t,x, z) +O†

ω,k f
∗
ω,k(t,x, z)

]
(4.13)

We emphasize once more, that this is an operator in the CFT. Notice that, if instead of the

modes fω,k(t,x, z) which go to z∆ near the boundary, we work with the modes f̂ω,k(t,x, z)

which multiply canonically normalized oscillators in the bulk, then we can rewrite the

expansion as

φCFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d

[
Ôω,k f̂ω,k(t,x, z) + Ô†

ω,k f̂
∗
ω,k(t,x, z)

]
, (4.14)

where the operators Ôω,k are precisely the ones defined by equation (4.6). The point is

that the normalization factor relating Oω,k to Ôω,k is precisely the inverse of that relating

fω,k(z) to f̂ω,k, hence the two expansions (4.13) and (4.14) are consistent. Written in the

form (4.14), it should be clear that at large N the operator φCFT(t,x, z) behaves like a

free local field on the black hole background. In particular we have

Z−1
β Tr

[
e−βHφCFT(t1,x1, z1) . . . . . . φCFT(tn,xn, zn)

]

CFT
=

= 〈φbulk(t1,x1, z1) . . . φbulk(tn,xn, zn)〉HH, (4.15)

where the r.h.s. is the correlator of a free scalar field in the black hole background (region

I) which is evaluated in the Hartle-Hawking vacuum. Given this equality, we are entitled
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to identify the operator φCFT(t,x, z) that we constructed with the local bulk operator in

region I of the black hole.

In particular, we have

[φCFT(t1,x1, z1) , φCFT(t2,x2, z2)] = 0 (4.16)

for two point (t1,x1, z1) , (t2,x2, z2) which are spacelike separated with respect to the met-

ric (3.1). This holds as an operator equation inserted inside the thermal trace, possibly

together with the insertion of anN0 number of other operators of the form φCFT. More gen-

erally, it holds as an operator equation modulo caveats like those mentioned in section 4.1.1.

4.4 Comparison with previous studies

Before we conclude this section, it is useful to compare our construction with that of [31].

The authors of that paper were working directly in position space, and attempted to write

the bulk field as

φCFT(t,x, z) =

∫
dt′dd−1

x
′O(t′,x′)K(t,x, z; , t′,x′) (4.17)

for an appropriate choice of “kernel” K . However, they found that attempting to compute

K directly led to a divergence, and so they were forced to complexify the boundary.

From the discussion above, we can see the origin of this divergence. Consider a mode

in the bulk, with a given frequency ω, and momentum k that solves the wave equation.

Near the horizon we have the expansion

f̂ω,k → e−iωt+ikx
(
eiδω,keiωz∗ + e−iδω,ke−iωz∗

)
, (4.18)

where z∗ is the tortoise coordinate, in which horizon is at z∗ → −∞. (For a precise

definition of the tortoise coordinate, we refer the reader to section 3.2.)

If we write the bulk field as

φCFT(t,x, z) =

∫

ω>0

dωdd−1

(2π)d
k

1√
2ω

(
aω,kf̂ω,k(t,x, z) + c.c.

)
, (4.19)

then merely the fact that φCFT must satisfy the canonical commutation relations near the

horizon tells us that we must have

[aω,k, a
†
ω′,k′ ] = δ(ω − ω′)δd−1(k − k

′). (4.20)

Our analysis above then tells us that for β|k| ≫ 1 and |k| ≫ ω, the relation between Ok,ω

with ak,ω must asymptote to

aω,k = Oω,ke
β|k|
4

However, if apart from doing this, we also try and Fourier transform this expression to

write φCFT(t,x, z) as an integral transform of O(t,x) as in (4.17), it is clear that we will

get a divergence. This is because, in the large-spacelike momenta region above, this Fourier

transform will look like
∫

O(x′, t′)e−ik·x′+iωt′dtdd−1
xe

β|k|
4 f̂ω,k(t,x, z)d

d−1
kdω
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Clearly, the integral over k diverges at least near the horizon of the black hole where it is

clear that f̂ω,k has no compensatory decaying exponential factor.

However, this divergence is just fictitious. The problem, of course, is that in doing this

integral we have no way of taking into account the fact that the operator Oω,k has a “nat-

ural norm” that is exponentially suppressed for large spacelike momenta. In momentum

space, we do not have to deal with this problem.

It is worth making one more comment on this exponentially suppressed norm. The

claim above (a) regarding spacelike modes in a thermal state, (b) the near-horizon expan-

sion (4.18), (c) the commutation relations (4.20), and finally (d) the claim that boundary

correlators are limits of bulk correlators

〈O(t1,x1)O(t2,x2)〉β = lim
z1,z2→0

[
Υ2z−∆

1 z−∆
2 〈φCFT(t1,x1, z1)φCFT(t2,x2, z2)〉β

]
,

If we consider the modes f̂ω,k(t,x, z) normalized so that their near horizon expansion

in (4.18), then near the boundary for large spacelike momenta, they must behave like

f̂ω,k(t,x, z) −→
z→0

z∆e−
β|k|
4 e−iωt+ik·x (4.21)

These ideas, and this result, are examined and verified in a very concrete setting in the

BTZ black hole background in appendix A.

5 Looking beyond the black hole horizon

In the previous section we reviewed the boundary construction of local bulk observables

which lie outside the horizon of the black hole. What about points behind the horizon?

For the reconstruction of local bulk observables in region I it was important to identify

the modes of the scalar field in region I with the Fourier modes of the boundary operator.

In section 3 we explained that in order to write operators in region II (inside the black

hole) we need modes both from region I and region III. This raises the question: what

should play the role of the modes of region III in the boundary field theory?

In fact the reader can easily persuade herself that, without these modes, it is not

possible to write down a local field operator behind the horizon. Heuristically, the reason

for this is as follows. If we try and extend the modes that we have constructed for region

I, past the horizon, it is only the “left moving” modes that can be smoothly analytically

continued past the horizon. To obtain a local field theory, we need independent right-

movers behind the horizon, and these must come from some analogue of region III.10

Now, as we have pointed out above, at late times, the geometry of a collapsing black

hole is well approximated by the geometry of an eternal black hole. It is also known that

an eternal black hole in anti-de Sitter space can be described by two CFTs — one on

each boundary of this geometry — that are placed in a particular entangled state. This

10The very perceptive reader might note that our condition of imposing normalizability at the boundary

actually led to a constraint between left and right movers. This is true, but our condition was imposed on

a time-like boundary. Behind the horizon, if we were to impose such a constraint, it would set constraints

on a space-like boundary leading to a loss of locality.
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construction was first explored in [44]. In this picture, it is clear what plays the role of the

required right-moving modes in the eternal black-hole. These are simply the right-moving

modes that are constructed in region III and come from the second copy of the CFT. This

story is consistent with the fact that, at finite temperature, the CFT is well described in

the thermofield doubled formalism of Takahashi and Umezawa [73].

In this thermofield doubled formalism, we double the Hilbert space of the theory and

consider the pure state

|Ψtfd〉 =
1√
Zβ

∑
e−

βE
2 |E〉 ⊗ |E〉, (5.1)

where the states of the original theory are labeled by the energy E (and perhaps other

quantum numbers). Corresponding to this “doubling” of the Hilbert space, every operator

O in the original Hilbert space can be given a partner Õ that acts on the second copy of the

space. The point of this construction is that thermal expectation values of operators in the

original (single-copy) Hilbert space, can equivalently be computed as standard expectation

values on the pure state |Ψtfd〉 in the doubled Hilbert space

Z−1
β Tr

[
e−βHO(t1,x1) . . .O(tn,xn)

]
= 〈Ψtfd|O(t1,x1) . . .O(tn,xn)|Ψtfd〉

Moreover, correlators involving both O and Õ in the doubled Hilbert space can be related

to correlators in the thermal, single-copy Hilbert space, with the replacement

Õ (t,x) → O(t+ iβ/2,x)

where the analytic continuation in complex time is defined along the “principal sheet” as

described in section 4.1.2. More precisely, we have

Z−1
β Tr

[
e−βHO(t1,x1) . . .O (tk + iβ/2,xk) . . .

]
= 〈Ψtfd|O(t1,x1) . . . Õ(tk,xk) . . . |Ψtfd〉

It is an easy exercise to verify that this identification of Õ(t,x) in the thermofield dou-

bled Hilbert space, with O (t+ iβ/2,x) inside the thermal correlators of the single Hilbert

space, is consistent with the commutator [O, Õ] = 0 in the doubled Hilbert space.

To summarize, it is well known that if we have a single theory placed in a thermal

density matrix, we can map the thermal correlators to correlators in a doubled theory

placed in the specific entangled pure state (5.1). And moreover, operators acting on the

“second copy” of the doubled theory correspond to analytically continued versions of the

thermal correlators of the original theory.

However, besides this story about thermal correlators, we know that in the original

single theory there is a large number of pure states which approximate the thermal density

matrix to an excellent approximation. For these pure states, what is the meaning of the

thermofield doubled formalism and of the second copy of operators Õ? We answer this

question in the next subsection.

5.1 Approximating a pure state as a thermofield doubled state

While the thermofield formalism is used quite frequently, and quite possibly the answer to

our question above is clear to experts, we were surprised not to find it stated clearly in the

literature. We believe that the correct answer is as follows.
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Consider a pure-state |Ψ〉 in a theory with many degrees of freedom that thermalizes.

We try to “coarse-grain” this state and identify some degrees of freedom that are easily

accessible to measurement, and others that are not. The fact that the observables of the

theory admit a division into “easily accessible to measurements” (coarse-grained observ-

ables) and those that are not (fine-grained observables), is a prerequisite to be able to talk

about “thermalization of a pure state”. If we start with a closed quantum system, we can

talk about “thermalization of a pure state” if there is some sense that we can divide the

full system into two parts, one of which plays the role of the “environment/heat-bath” and

the other of the “system in thermal equilibrium” and if moreover the dynamics is such that

under time evolution the pure state |Ψ〉, when projected on the small system, eventually

looks approximately like a thermal density matrix. Clearly this is an approximate notion,

which can only be made precise if there is some parameter which controls the validity of

these approximations. In the case relevant to us, the full quantum system is the order

O(N2) degrees of freedom of the large N gauge theory, which may be in some specific pure

state |Ψ〉, while the role of the “sub-system” that reaches thermal equilibrium is the O(1)

degrees of freedom corresponding to light gauge invariant operators. The parameter which

controls the validity of the splitting into coarse- and fine-grained spaces is N .

For example, in the case that we have been considering above, the observer may be able

to measure the eigenvalue of the “occupation level” nω,k = Ô†
ω,kÔω,k of the modes (4.6)

but this does not completely specify the state of the system; for that, the observer would

need to measure several other operators including those that correspond to “stringy” and

trans-Planckian degrees of freedom in the bulk. Using this intuition, we divide the Hilbert

space of the CFT into a direct-product of a “coarse-grained” part and a “fine-grained” part

H = Hcoarse ⊗Hfine. (5.2)

There are many such possible divisions of the gauge theory into coarse- and fine-grained

degrees of freedom. However, as long as the coarse-grained degrees of freedom do not probe

too much information — we quantify this phrase below — about the state we will see that

our interpretation below holds.

We now consider some operator in the theory. For any generalized field O(t,x), what

our low energy observer really measures is

Oc(t,x) = PcoarseO(t,x), (5.3)

where Pcoarse is the “projector” onto the coarse-grained Hilbert space which traces out the

fine grained degrees of freedom. After performing this partial trace, Oc(t,x) acts as the

identity on the fine-grained space. Given a physically well motivated decomposition of the

Hilbert space, we expect that correlators of Oc will be close to those of O. We should

mention that a division of the Hilbert space into “coarse” and “fine” degrees of freedom

is often performed in studies of “dissipation” in quantum systems. As far as we know,

this was first attempted by von Neumann [74] and our “coarse” operators are precisely the

“macroscopic” operators of that paper.
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Now, let us turn to the pure state that we are considering, which is close to a thermal

state. Corresponding to the Hilbert space decomposition above, this state can be written as

|Ψ〉 =
∑

i,j

αij |Ψc
i 〉 ⊗ |Ψf

j 〉, (5.4)

i.e. as an entangled state between the coarse- and fine-grained parts of the Hilbert space.

Here the states |Ψc
i 〉 run over an orthonormal basis of states in the coarse-grained Hilbert

space, and |Ψf
j 〉 run over an orthonormal basis in the fine-grained Hilbert space.

In fact, what the low-energy observer sees directly is not this entangled state, but rather

a density matrix. Since the pure state is close to being thermal, we even know the eigenval-

ues of this density matrix. In some basis, the coarse-grained density matrix can be written

ρc =
1

Zc
β

diag
(
e−βEi

)
(5.5)

where Ei are the eigenvalues of the coarse-grained Hamiltonian and Zc
β =

∑
i e

−βEi is the

coarse-grained partition function.11

What is the form of the density matrix in the fine-grained Hilbert space? In fact, as

is well known, we can find a basis for the fine-grained Hilbert space so that the density

matrix looks exactly like (5.5) with zeroes in the other places.

The argument is very simple, and we repeat it here for the reader’s convenience. We

need to “diagonalize” the matrix αij in (5.4). This process, called a “singular value de-

composition”, involves writing αij as

αij =
∑

m

UimDmmVmj

where U is a unitary matrix that acts in Hcoarse and V is a unitary matrix in Hfine, while

D is a rectangular-diagonal matrix i.e. a matrix of the form

D =



D11 0 0 0 . . .

0 D22 0 0 . . .

0 0 D33 0 . . .


 (5.6)

This means that we can re-write (5.4) as

|Ψ〉 =
∑

i

Dii|Ψ̂c
i 〉 ⊗ |Ψ̂f

i 〉 (5.7)

where now, both |Ψ̂c
i 〉 and |Ψ̂f

i 〉 are orthonormal. In fact from (5.5), we already know that

Dii =
1√
Zc
β

e−
βEi
2 .

Now, (5.7) immediately tells us that the fine-grained density matrix must also look like

ρf =
∑

i

Dii|Ψ̂f
i 〉〈Ψ̂

f
i |.

11In in any given pure state |Ψ〉, the exact coarse-grained density matrix may be different from the exactly

thermal one above, but these differences are unimportant in what follows, so we ignore them.
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Let us return to the generalized free field O(t,x) that we have been discussing. As we

mentioned, the low energy observer can only measure Oc(t, x) defined in (5.3). However,

in the coarse-grained Hilbert space, we should be able to write12

Oc(t,x) =
∑

i1,i2

ωi1i2(t,x)|Ψ̂c
i1〉〈Ψ̂c

i2 |.

Now, we define an operator that acts in the same way on the fine-grained Hilbert space

Õ(t,x) =
∑

i1,i2

ω∗
i1i2(t,x)|Ψ̂

f
i1
〉〈Ψ̂f

i2
|. (5.8)

The complex conjugation on ω is consistent with the original conventions of [73], and im-

plies that the map between O and Õ is anti-linear. This is necessary to ensure that the

map is invariant under a change of basis that leaves (5.7) invariant.

What we have shown is that, even in a pure state for the gauge theory, for each general-

ized free-field O(t,x) and its corresponding modes Oω,k, we spontaneously obtain doubled

operators Õ(t,x), with corresponding modes Õω,k! We explore this emergence further in

section 6 in a concrete example.

These doubled operators are precisely what we need to construct local operators in

region II. However, before we attack that question we first want to mention a relation be-

tween the correlators of these operators and analytically continued correlators of ordinary

operators.

From this point in this paper, we will drop the subscript Oc(t,x); it is understood that

correlators now refer to the coarse grained operators only.

5.2 Relation to analytically continued thermal correlators

In this subsection, we will point out below that Õ operators can — in a sense that we make

precise — be thought of as analytically continued versions of the ordinary operators.

Let us say that we wish to compute a two-point correlator involving both O and Õ in

the state |Ψ〉 above

〈Ψ|O(t1,x1)Õ(t2,x2)|Ψ〉 = (Zc
β)

−1
∑

i1,i2

e−
β(Ei1

+Ei2
)

2 〈Ψ̂c
i1 |O(t1,x1)|Ψ̂c

i2〉〈Ψ̂
f
i1
|Õ(t2,x2)|Ψ̂f

i2
〉

= (Zc
β)

−1
∑

i1,i2

e−
β(Ei1

+Ei2
)

2 〈Ψ̂c
i1 |O(t1,x1)|Ψ̂c

i2〉〈Ψ̂c
i1 |O(t2,x2)|Ψ̂c

i2〉∗

= (Zc
β)

−1
∑

i1,i2

e−
β(Ei1

+Ei2
)

2 〈Ψ̂c
i1 |O(t1,x1)|Ψ̂c

i2〉〈Ψ̂c
i2 |O(t2,x2)|Ψ̂c

i1〉

12Note, that we have kept the time evolution of the coarse operator arbitrary. In particular, the

division (5.2) does not correspond to an analogous separation of the Hamiltonian, which may well couple

the coarse and fine degrees of freedom. In studies of quantum dissipation, this coupling is sometimes

quantified by means of an “influence functional.” It would be interesting to understand this in detail for

the boundary theory.
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= (Zc
β)

−1
∑

i1,i2

e−βEi1 〈Ψ̂c
i1 |O(t1,x1)|Ψ̂c

i2〉〈Ψ̂c
i2 |O(t2 +

iβ

2
,x2)|Ψ̂c

i1〉

= (Zc
β)

−1Trc

[
e−βHO(t1,x1)O

(
t2 +

iβ

2
,x2

)]
, (5.9)

where the last trace is over the coarse grained Hilbert space, and we have used the fact that

O is Hermitian in going from the second to the third line. Note that the operator ordering

is important. The analytically continued operator always appears on the right. As we

discussed above, when we discussed thermal correlators, if this operator had appeared on

the left, the correlator above would naively have diverged and we would have had to define

it by giving a prescription for how to cross the branch cut. In fact, the ordering in (5.9)

corresponds to always remaining in the principal branch of the function F described in

section 4.1.2.

We should mention that the equation above will receive small corrections (suppressed

by 1
N factors) from two sources. First, correlators of Oc are not precisely those of the

original operator O. Second, correlators in the state |Ψ〉 may differ from those in the

canonical ensemble. However, these effects are not important for our discussion below.

5.3 Reconstructing the full eternal black hole from a single CFT

We now describe how to reconstruct, from the CFT, local bulk operators behind the hori-

zon. We emphasize that we are working in a single CFT in a pure state. As explained in

the previous subsection, for every local operator O(t,x) we define the operator

O(t,x) → Õ(t,x).

and its Fourier modes

Õω,k =

∫
dtdd−1

x eiωt−ikx Õ(t,x)

The complex conjugation in (5.8) implies that the modes Õω,k generate an algebra that

is identical to that of the modes O†
ω,k, while at the same time these two sets of modes

commute with each other. In the previous section we identified the gauge theory modes

Oω,k with the Schwarzschild modes aω,k in region I of the eternal black hole. It is clear

that the modes Õω,k and Õ−ω,k — which we emphasize act on the same Hilbert space, of

the single CFT — play the role of the bulk modes ã†ω,k and ãω,k in region III of the eternal

black hole. This means that we identify

ˆ̃Oω,k ⇔ a†ω,k,

ˆ̃O−ω,k ⇔ aω,k,

where both identifications assume ω > 0 and
ˆ̃O is defined in analogy to (4.6).

Having established this identification, it is now straightforward to write down local

bulk operators of all four regions of the eternal black hole. For region I, we already did

that in the previous section and we had

φICFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d

[
Oω,kfω,k(t,x, z) +O†

ω,kf
∗
ω,k(t,x, z)

]
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For region III, we have a similar expansion. We define the analogue of the AdS-

Schwarzschild coordinates t,x, z for region III, in terms of the Kruskal coordinates U, V by

the relations
u = t− z∗ , v = t+ z∗

U = e
− du

2z0 , V = −e
dv
2z0

(5.10)

with z∗ defined in terms of z exactly as above equation (3.2). Then the CFT operator

φIIICFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d

[
Õω,kfω,k(t,x, z) + Õ†

ω,kf
∗
ω,k(t,x, z)

]
(5.11)

plays the role of the local bulk field in region III. Notice that while we parameterize the

points in region III by the same set of coordinates t,x, z, they are obviously distinct points

from those in region I, since their U, V values are different.

Notice that the relations (5.10) for region III are similar, but not quite the same, as

the relations (3.3) for region I. In particular, the different signs in the second line imply

that as Kruskal time increases, t decreases in region III. Related to this, we have the fact

that although (5.11) and (4.13) look similar, Õω,k is actually a “creation operator.” (See

appendix B for a similar situation in the simpler case of Rindler space quantization.)

It is now straightforward to use the expansions in regions I and III to define a local

field in regions II and IV. We focus on region II which is our main interest. We can

parametrize region II by t,x, z, with z0 < z < ∞ and −∞ < t < ∞, which is now a

spacelike coordinate. Remember that in these coordinates the singularity is at z → ∞.

The time t in this region increases as we approach the horizon between I and II. We look

for solutions of the Klein Gordon equation of the form

gω,k(t,x, z) = e−iωt+ikxχω,k(z)

We get a 2nd order ODE for χω,k(z). What is important is that in region II there are

no boundary conditions that we need to impose (unlike what happened in region I or III

where we imposed the “normalizable” boundary conditions at infinity). So it seems that

in region II we have twice the number of modes as in region I (or III). Of course this was

to be expected since region II lies in the causal future of both regions I and III and the

information of both regions I and III eventually enters region II. So it is normal to have

twice as many modes in II.

Hence for any choice of ω,k we get two linearly independent solutions χ
(1,2)
ω,k (z). We

can choose the linear combination of these solutions so that as z → z0 (from larger values,

i.e. from inside the black hole) we have

χ
(1)
ω,k(z) ∼ c(ω,k)(z − z0)

−iω, χ
(2)
ω,k(z) ∼ c(−ω,k)(z − z0)

iω for z → z+0 ,

where c(ω,k) also appeared in (3.5). Now imposing the continuity of the field at the

horizon between I and II and also between III and II we find that the field in region II

has the expansion

φIICFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d

[
Oω,k g

(1)
ω,k(t,x, z) + Õω,k g

(2)
ω,k(t,x, z) + h.c.

]
(5.12)
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where g
(1,2)
ω,k (t,x, z) = e−iωt+ikxχ(1,2)(z). A similar construction can be performed for the

field in region IV.

To summarize, using the boundary modes Oω,k and Õω,k which were described above,

we can reconstruct the local quantum field φ everywhere in the Kruskal extension and

that at large N the correlators of these operators satisfy the analogue of (4.15), but now

operators can be inside or outside the horizon

Z−1
β Tr

(
e−βHφCFT(t1,x1, z1) . . . φCFT(tn,xn, zn)

)

CFT
=

= 〈φbulk(t1,x1, z1) . . . φbulk(tn,xn, zn)〉HH (5.13)

The expansions (5.12) can be written more explicitly for the case of the BTZ black hole,

where the mode wave functions g
(1,2)
ω,k can be found analytically.

In particular, for any two points P1, P2 in any of the two regions I,II we have

[φCFT(P1) , φCFT(P2)] = 0 (5.14)

when P1, P2 are spacelike separated with respect to the causal structure of the AdS-Kruskal

diagram. Here, to write the operator φCFT(P ), we use either (4.13) or (5.12) depending on

whether P is in region I or II. Also, as before, this equation holds as an operator equation

inside the thermal trace/or on a heavy typical pure state, to leading order at large N and

modulo the caveats in section 4.1.1.

Notice, that while it naively seems so, the claim (5.14) is not in conflict with the idea

from black hole complementarity, that the Hilbert space of the interior of the black hole is

not completely independent from the Hilbert space outside. The point is that (5.14) holds

only in the large N limit and up to the aforementioned caveats. So while the commutator

of two simple measurements of the scalar field, inside and outside the horizon, is zero

in the large N limit, if we consider the commutator of an operator inside the horizon

with a very complicated measurement outside (which effectively corresponds to measuring

Na with a > 0 instances of φ), we have no reason to expect the commutator to vanish

— not even in the large N limit. Hence the Hilbert spaces inside and outside are not

completely independent. These issues will be discussed in more detail in section 6.

5.4 Interaction between coarse and fine degrees of freedom

An important question is how to describe the interaction between the coarse and fine

degrees of freedom. In this paper we assume that, when we are working in the large N

limit, the interaction terms between the two can be ignored. The reason that correlators

of coarse-grained operators can nevertheless show signs of thermalization (for instance,

exponential decay in time), is that the coarse part of the Hilbert space appears to have

effectively continuous spectrum.

The situation is analogous in the bulk. When working in the semiclassical approxima-

tion, time evolution under Schwarzschild time in region I of the black hole, is governed by

a Hamiltonian which can be written in terms of bilinears of the local bulk fields in region I,

without any interaction terms involving fields in regions II/III/IV or interaction terms with
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the “membrane degrees of freedom”. The reason that fields in region I show exponential

decay and quasi-normal behavior, even though they evolve under a free Hamiltonian, is

because the spectrum of the free Hamiltonian in region I is continuous. So it seems that in

the semi-classical approximation (in the large N limit) the interaction between the particles

outside the black hole and the “membrane degrees of freedom” can effectively be reproduced

by describing the particles using a free Hamiltonian, with a continuous spectrum.

While we have not fully clarified this issue, we believe that something analogous is

happening in the gauge theory. The spectrum of energy eigenstates of the gauge theory

has gaps of the order of e−N2
. The coarse grained modes O

ω,~k
are not supposed to be

defined with perfect accuracy in ω, but rather to be coarse-grained with some small band

δE in energy. This width can be very small, but still contain a large number of distinct

microstates. So even after coarse graining, the allowed values of ω seem to take effectively

a continuous spectrum. See also the discussion in [55].

To further illustrate the intuition, we add some speculative comments which need to

be investigated in more detail. Let us consider a microstate |Ψ〉 of approximate energy

E0 ∼ O(N2) which has the expansion

|Ψ〉 =
∑

i

ci|Ei〉

in terms of the exact eigenstates |Ei〉 of the Hamiltonian. When studying the 2-point

function of a single trace operator on this state — and suppressing the space dependence

— we find

〈Ψ|O(t)O(0)|Ψ〉 =
∑

i,j,k

c∗i cke
−(Ej−Ei)t〈Ei|O(0)|Ej〉〈Ej |O(0)|Ek〉

Assuming that the matrix elements 〈Ej |O(0)|Ek〉 of the single trace operator follow the

general form which is implied by the eigenstate thermalization hypothesis [75, 76], we

expect that this correlator can be approximated by

〈Ψ|O(t)O(0)|Ψ〉 ≈
∫
dωρ(E0 + ω)e−iωtf(E0, E0 + ω)

where f is a smooth function of the energy and ρ(E) is the density of states. It is this

continuous integral which reflects the continuous spectrum in the bulk and is responsible

for the exponential decay of the correlators even at large N . This is not inconsistent with

the fact that single trace correlators on |Ψ〉 factorize. Large N factorization reflects the fact

that at large N we can effectively describe the coarse degrees of freedom as if they were not

directly interacting with the rest. The interaction has been traded off with the continuum.

The effectively continuous spectrum of the coarse grained operators Oω,k can of course

not be really continuous, since the size of the coarse Hilbert space cannot be too big. So

this continuum must be a large N approximation of an underlying discrete spectrum.

Irrespective of this discussion, we would like to emphasize that the interaction

terms between the coarse and fine degrees of freedom and the time-dependence of our

construction is an important question which we have not addressed fully in this work. In
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order to do that it is important to consider 1/N interactions and to understand how our

construction has to be modified then. This is, however, beyond the scope of the current

paper and we intend to investigate it in future work.

6 Applications

Our construction above tells us that bulk correlators can be written in terms of boundary

correlators. This has a significant advantage: it translates questions about quantum

gravity in the bulk, which are mysterious, to questions about conformal field theory

correlators that are well defined.

There has been significant recent discussion of the information paradox. In an impor-

tant paper, Mathur [2] sharpened the contradiction between semi-classical evolution and

unitarity in quantum gravity, by using the strong subadditivity of entropy. This argument

was recently re-emphasized in [6]. Both papers pointed out that one way to resolve the

contradiction would be to abandon the standard assumption that the horizon of the black

hole is featureless. We can use our construction to obtain hints about the nature of the

horizon, and also to the resolution of the information paradox. We do this in turn below.

6.1 Nature of the horizon

First, let us address the issue of what happens to the infalling observer when he crosses

the horizon. This is the same as the question of what happens to correlators of φCFT for

points near the horizon in a typical heavy pure state. If the theory has a good large N

expansion in the thermal state then, as we show below, these correlators are the same (to

leading order in 1
N ) to those in the thermal ensemble. In the thermal ensemble, it is clear

that correlators of φCFT are the same as those predicted by semi-classical GR.

The reader should not be concerned about the fact that on one side of the horizon we

have both the left and right moving modes of a field constructed just from O, while on the

other side the modes of Õ appear. This is analogous to the fact that when we quantize a field

in Minkowski space using Rindler coordinates (see appendix B for notation and a review),

in region I only the modes aω,k appear, while in region II the modes ãω,k also appear.

Nevertheless, in the state corresponding to the Minkowski vacuum correlation functions

are perfectly regular across the horizon. In precisely the same fashion, the definition (5.8)

ensures that correlators of Õ, in a typical pure state close to the thermal state, have the

same properties as those of O, which we discussed in detail in section 4.2. From here, it is

easy to show that, in our construction, correlation functions are regular across the horizon.

So, we will conclude below that

For AdS duals of conformal field theories with a good 1
N expansion at finite tem-

perature, our construction within AdS/CFT predicts that an observer falling

through the horizon of a big black hole will measure the correlators predicted
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by semi-classical GR. In particular, he will not observe anything special about

the horizon by doing either high energy13 or low energy experiments.

This conclusion should be contrasted with the fuzzball proposal, which makes a

different claim about the nature of the horizon. We are aware that there are different

perspectives on the fuzzball proposal. So, for the sake of precision, we will consider the

following statement:

(Extrapolated) fuzzball proposal: the geometry is modified near the region

where one expects to find the horizon, and it is this modification which contains

information about the microstate that resolves the information paradox. It is

possible to see these geometrical differences by doing experiments at the scale

T — the temperature of the black hole.14

It appears to us that this interpretation of the proposal is necessary if we are to resolve

the information paradox using this proposal: the fuzzball proposal resolves the Hawking

paradox by finding a mechanism to encode information about the black hole microstate

in the Hawking radiation. This is also the statement that we seem to find in the recent

literature [1, 2, 23, 24, 77].

Since the geometry can be measured by correlators of the metric, and of other light

fields, the fuzzball proposal must imply the correlators of light operators differ between

the different states of the ensemble, so that if we do our construction in one state, we get

one geometry whereas in another state we get another geometry. More precisely, we take

a typical pure state |Ψ〉 in the CFT and evaluate the correlator

〈Ψ|φCFT(P1) . . . φCFT(Pn)|Ψ〉 (6.1)

where the points P1, . . . Pn correspond to bulk points along the trajectory of an infalling

observer, then the proposal seems to be that this correlator gives us information about

the microstate |Ψ〉.
Our construction tells us that (a) φCFT can be written in terms of the boundary

operator O and (b) to accurately evaluate correlators involving insertions of φCFT with

finite momentum and frequency, we do not need a parametric enhancement of this

frequency on the boundary. The latter property is discussed in more detail in section 7.

So, our construction allows us to translate the extrapolated fuzzball proposal into the

following statement in the CFT:

Implication of the (extrapolated) fuzzball proposal : by measuring low point cor-

relators of light operators, we can distinguish between the various microstates

of the CFT that constitute a black hole.

13But not too high. Here we are talking about experiments at energy scale E, measured in the local

frame of the infalling observer, where E can be anything, as long as it does not scale with N (or λ — in

the case of the N = 4 SYM).
14Regardless of the ability of the infalling observer to actually conduct experiments at this energy scale

in his lifetime, this is a statement about correlation functions that we can examine.
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We will now show that this is impossible if the CFT admits a large N expansion for

thermal correlators. If such a large N expansion exists — as we believe it does for,

say, N = 4 Super Yang-Mills at strong coupling — then our construction, or the idea

that bulk correlators can be written as non-singular transforms of CFT correlators is in

contradiction with the fuzzball proposal.

Let us now consider a 2-point function for simplicity (higher-point functions can be

considered similarly)

〈Ψ|O(x1)O(x2)|Ψ〉.

The question is whether we can use this 2-point information to extract some information

about the state |Ψ〉. Let us say that we can measure this correlator to order 1
Nα , where α

is some fixed power (that does not scale like N). Then we have

〈Ψ|O(x1)O(x2)|Ψ〉 = 〈Ψ(∞)O(x1)O(x2)Ψ(0)〉 (6.2)

=
∑

Q

CQ
OO〈Ψ(∞)

Q(x2)

|x1 − x2|2∆O−∆Q
Ψ(0)〉 (6.3)

=
∑

Q

CQ
OOCΨΨQ

1

|x1 − x2|2∆O−∆Q |x2|∆Q
(6.4)

≡
∑

Q

GQ(x1, x2). (6.5)

Here in (6.2) we have written the 2-point correlator in the state |Ψ〉 as a 4-point correlator

in the vacuum. In (6.3) we have used the OPE expansion to write the operator product

of the two O operators as a sum over all other operators Q in the theory, with coefficients

that are fixed by conformal invariance up to 3-point coefficients, which are pure numbers,

denoted by CQ
OO above.15 We have then used conformal invariance again to evaluate the

remaining 3-point function, and finally GQ is merely a short-hand for the contribution of

the operator Q to the initial correlator.

Now the key point is that at any given value of x1, x2, if this correlator has a large N

expansion, and if we are measuring it to an accuracy 1
Nα , then the number of operators

Q that can contribute to this order must itself be bounded by Nα. One might have hoped

to disentangle the contribution of different operators Q by separating the points x1 and

x2 by some order N distance, but as we saw in our construction above we do not need to

do so to reconstruct local operators near the horizon if we are measuring bulk correlators

that are separated by O(1) near the horizon.

So the correlator really can, at most, contain information about the product CQ
OOCΨΨQ

for some κNα operators, where κ is some order 1 number. However, the black hole consists

of eS states. Since S ∝ N (we remind the reader that, in our notation, N is a measure of

the central charge and not the rank of the boundary gauge group) and the temperature

and the leading constants do not scale with N in our setup, and so we can loosely say

that we need eN pieces of information to identify the black hole microstate. Clearly

15More precisely, this is true only for scalar operators. We have suppressed tensor operators only to

lighten the notation. The inclusion of these does not alter the argument in any way.
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this is impossible with the information we can glean from the correlator. To distinguish

the different microstates of the black hole, we would need to measure correlators to an

accuracy e−N . At this level it is not clear (and probably not true) that the correlators

have a geometric interpretation.

It is useful to consider the example of 2-charge solutions [4, 5] which can be identified

with the Ramond ground states of the D1 − D5 CFT. In that case also, most of the

classical solutions are string scale. In the AdS5 case, to obtain information about string

scale objects, we would need to measure correlators to an accuracy e−λ. However, what

our construction here tells us is that to recover information about a big black hole, we will

need to measure correlators to an accuracy that scales exponentially with N , not just with

λ. While string scale geometries might possibly make sense, by switching duality frames,

the degeneracy of big black holes looks like it might come from Planck scale geometries.

We do not understand how to discern geometries at the Planck scale.

6.2 Recovering information, small corrections, firewalls and complementarity

We now turn to the issue of the information paradox itself. Indeed, this is the key issue

in all the recent discussions on whether the nature of the horizon needs to be modified.

For example, several regular solutions, with the same charges as the black hole, have

been found in several theories (see [78] for a review and references to the very extended

literature). These solutions are extremely interesting. However, by themselves, they

are not enough to justify the extrapolated fuzzball proposal that we considered above.

Instead, Mathur [2] provided an indirect argument for why the nature of the horizon had

to be modified to resolve the information paradox.

A very similar argument has recently been made in [6]. However, starting with the

same argument as Mathur, Almheiri et al. stopped at the (weaker) conclusion that the

nature of the horizon must be modified. Since any such modification would generically

cause the infalling observer to burn up, these authors spoke of “firewalls” rather than

fuzzballs. Since our conclusion suggests the opposite — that the nature of the horizon

is not modified — we must explain how this is consistent with the preservation of

information. We briefly review the information loss arguments below. We then describe

why we disagree with these arguments and furthermore how our proposal suggests a

natural resolution to the information paradox.

6.2.1 Strong subadditivity and the information paradox

Review of the “Hawking theorem”. The argument that the information paradox

cannot be resolved if we retain the hypothesis that the horizon is featureless was termed

the “Hawking theorem” in [2].

Consider a toy model of the Hawking process where a pair of entangled qubits are

produced at the horizon at each step; one of them is emitted into the radiation outside and

the other falls into the black hole. So, at each stage we produce the pair

1√
2
(|0〉|0〉+ |1〉|1〉) . (6.6)
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Of these, the second bit goes out of the black hole, whereas the first bit falls inside. We

will call the bit that goes outside B, while the bit that falls inside is C. Then, from (6.6),

we can abstract the lesson that B and C are maximally entangled up to small corrections

SBC ≈ 0. (6.7)

This more general conclusion also follows from the semi-classical observation that, in a

certain frame, the state of the black-hole is merely the vacuum, and Hawking radiation is

obtained by performing a Bogoliubov transformation on this state.

If we consider the density matrix of the bit outside, in this case, it is given by

ρB =
1

2

(
1 0

0 1

)
≡ 1

2
I. (6.8)

The entanglement entropy of the bit with the black hole is given by

SB = −Tr (ρB log ρB) = ln 2.

However, in general we can abstract away the rule that

SB > 0, SC > 0. (6.9)

Since SBC ≈ 0, we have SC ≈ SB.

Apart from the systems B and C designated above, let us also consider the system

A, which comprises all the radiation that has been emitted by the black hole up to the

step under consideration. If we assume that the black hole started in a pure state, then

eventually the entanglement entropy of this radiation with the black hole should start

decreasing. So, for a very old black hole, it must be true that

SAB < SA. (6.10)

This is the statement that when the bit B goes and joins the radiation A, it decreases its

entropy.

Mathur [2] pointed out that strong subadditivity tells us that (6.10), (6.7) and (6.9)

appear to be in contradiction. For three separate systems A,B,C, it is possible to show that

SA + SC ≤ SAB + SBC (6.11)

Since we have SA > SAB and SC > SBC , we seem to have a contradiction.

The same argument was made in a slightly different way by [6]. They instead used

the identity

SABC + SB ≤ SAB + SBC , (6.12)

which is equivalent to (6.11). Since SBC = 0 (see (6.7)), we have SABC = SA. Then

from (6.10), we get

SA + SB < SA ⇒ SB < 0 ? (6.13)

This clearly contradicts (6.9).
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The resolution. The resolution to this paradox is automatically provided by our con-

struction of the black hole interior in section 5:

Our construction makes it clear that for the black hole it is incorrect to

apply (6.11) or (6.12) since A,B,C cannot be treated as separate subsystems

at the level of accuracy where (6.10) is true.

Note that bit C that falls in, is an excitation of the Õ operators. However, as we explained

in detail above, the Õ operators arise because we coarse-grained our initial Hilbert space.

Now, at the start of black hole evaporation this is a perfectly good description since

we can easily accommodate the outgoing radiation A in our coarse grained Hilbert space.16

As more and more bits emerge, we need to enlarge our coarse-grained Hilbert space to

describe them.

As we do this, beyond a point, our construction of the Õ operators breaks down. In a

discrete Hilbert space, this happens when the number of rows in the matrix in (5.6) (the

dimension of Hcoarse) become larger than the number of columns (the dimension of Hfine).

Indeed, it is precisely at this point — when the density matrix of the radiation outside

is of the same dimensionality as the rest of the system — that we expect (6.10) to start

being true.

So, our construction points out that if we wish to make our description of particles

outside the black hole so precise that it can keep track of the quantum state of all the

particles that have been emitted by an old black hole then, at this level of precision, the

semi-classical picture of spacetime is invalid.

This does not imply a breakdown of effective field theory. In fact an infalling observer

using effective field theory would measure the operator that we constructed in (5.12) and

its correlators. We can rephrase the “strong subadditivity” paradox in terms of correlation

functions. However, it is clear that the number of operators in these correlation functions

would have to scale with N . It is for such correlators, with O(N) insertions that we cannot

— and should not expect to be able to — use effective field theory.

We should mention that a variant of our ideas was discussed in [7, 16], where it

was written in the form A = RB indicating that the interior of the black-hole was, in

some sense, a “scrambled” version of the exterior. The authors of [7, 16] decided that

this led to problems involving “quantum cloning” (quantum information appears to be

duplicated), and with “chronology protection”. Our idea is subtly different: when the

CFT is obsered at a coarse-grained level, it is possible to write down a semi-classical

spacetime that reproduces these observations, with a very specific combination of the

fine-grained degrees of freedom playing the part of the interior of the black hole. Both

16We should mention that, in a strict sense, our construction works for a big black hole in AdS. With

standard reflecting boundary conditions, this black hole never evaporates. To make it evaporate, we need

to couple the boundary theory to some other system which collects the “glueballs” as they form; such a

system could mimic a boundary, which absorbs the radiation that reaches it. However, the reader who

does not want to think of such a construction should note that the moral — obtaining more and more fine

details of the system causes the semi-classical description in terms of a spacetime to break down — is very

robust and should carry over to flat space black holes.
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these regions are rewritings of parts of the same CFT Hilbert space. If we insist on a

higher level of accuracy, then it is not quantum mechanics that breaks down but rather

the interpretation of CFT correlators in terms of a semi-classical and local spacetime.

6.2.2 Can small correlations unitarize Hawking radiation?

Once we have resolved the strong subadditivity paradox, there is still apparently an

information puzzle that makes no reference to the ingoing bit (i.e. to system C): how can

the large number of apparently thermal bits that are emitted by the black hole lead to

a pure state. In fact the resolution to this has been understood for a long time [79]. We

review this puzzle here and its resolution also. The reader who is already familiar with

this can skip straight to the example in 6.2.3.

The paradox. Naively if we assume that the same process of Hawking radiation repeats

K times (where K is the number of bits emitted), then the density matrix of the radiation

outside will look like

ρK = (ρB)
K ,

where, by ρKB we really mean

ρK0 ≡ ρ⊗ ρ⊗ ρ . . .K times,

i.e. it is a 2K × 2K dimensional matrix.

The entropy of this density matrix is

Shawk = −Tr(ρK ln ρK) = K ln 2. (6.14)

If we modify the density matrix (6.8) by a small amount — such corrections would

be expected through quantum and stringy effects — but continue to assume that each

Hawking emission is exactly independent then the entanglement entropy computed above

does not change appreciably.

More precisely, if we take each individual density matrix to be

ρstr = ρ1 + ǫρcorr,

then

Shawk − [−Tr(ρstr) ln(ρstr)] ∼ O(ǫ).

This conclusion continues to hold even if we allow ρcorr at each step to be different but

uncorrelated.

The paper [1] explains that ordinary objects like coal or burning paper avoid this

paradox since in those cases successive emissions are not uncorrelated. So, for example,

if the computer on which we are typing this were to go up in flames then successive

portions of the computer would emit distinct and identifiable thermal emissions. First,

the keyboard would burn, and by collecting that radiation, an observer could recover some

information about the keyboard, even if the keyboard were only a negligible fraction of

the mass of the full computer.
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However, this is simply the statement that small subsystems of everyday objects are

not maximally entangled with the rest of the object. As we will show in a toy example

below, by introducing very small off-diagonal elements (which, however, may link the first

bit emitted to the last bit emitted), we can unitarize Hawking radiation.

The resolution. Just to be specific, let us consider a 4-dimensional asymptotically flat

black hole of Schwarzschild radius Rbh and take lp to be the Planck scale. In the lifetime

of this black hole, it will emit about N ≈
(
Rbh
lp

)2
quanta. Clearly, for the first K ≪ N of

these quanta, the correction is unimportant and the density matrix is well approximated

by the Hawking matrix.

Let us imagine that the density matrix that is produced at each step is actually given by

ρexact = ρhawk + 2−Nρcorr, (6.15)

where ρcorr is a density matrix that, in the natural basis of observables, has elements

that are O(1). This correction is exponentially suppressed and can have several origins.

Moreover, since it is exponentially suppressed in Rbh
lp

, it cannot be detected at any order

in perturbation theory: this is an inherently non-perturbative correction.

This correction is reminiscent of the “second saddle point” discussed in [44]. It would

be nice to see if such a semi-classical correction can be identified directly in Lorentzian

space. However, even if such a semi-classical perspective does not exist, and this correction

is visible in the gauge theory but cannot be interpreted in terms of a simple geometric

process, that would not be a contradiction.

Now, it is clear from (6.15) that for the first K emissions, where K ≪ N , the density

matrix of the radiation is given by the Hawking matrix to an excellent approximation.

However, as K grows large and becomes comparable to N , we see that the individual

elements of the Hawking density matrix become so small, that they are comparable to the

size of the corrections. At this point, the corrections can no longer be neglected.

In fact, with the numerical pre-factors that we have inserted in front, the corrections

are precisely of the correct order to unitarize the process. Note that after N steps, the

Hawking density matrix looks like

ρhawk =
1

2N
I2N×2N ,

where I2N×2N is the identity matrix in 2N dimensions.

For the full density matrix to be unitary, we must have, in some basis,

ρexact =




1 0 0 . . . 0

0 0 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 0


 .
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So, in this basis — which may be quite unnatural from the point of observables accessible

to an observer at low energies — the correction matrix must look like

ρcorr =




2N − 1 0 0 . . . 0

0 −1 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . −1


 . (6.16)

We now show that this is not inconsistent with the statement below (6.15) — that ρcorr
has all elements of O(1) in a basis of natural observables.

For (6.16) to hold, we must have

Tr(ρ2corr) = 22N .

However, even if all the elements of ρcorr in an ordinary basis are O(1), we have

Tr(ρ2corr) =
∑

ij

ρijcorrρ
ij
corr = O

(
22N

)
,

since the sum over i, j runs over 22N elements.

6.2.3 An example

Let us now give an example where all the ideas are realized. In particular:

1. We will construct a toy model that describes the emission of “spins”; each emitted

spin has an almost exactly thermal density matrix.

2. We will show how small corrections can unitarize this process so that after more than

half the system has “evaporated”, the density matrix that describes all the emitted

spins together starts becoming pure.

3. We will show how, for each spin that is emitted, we can also identify (within an

effective description), a corresponding “spin” that remains within the system and

is perfectly anti-correlated with the emitted spin. This is the analogue of the bit

“C” that falls inside the black hole. However, we will show that this effective

description breaks down at precisely in time to avoid any contradiction with the

strong subadditivity of entropy.

Consider a system of N spins, each of which can be in two states — |0〉, or |1〉.
The Hilbert space of the system is spanned by 2N basis vectors, each of which can

be represented by a single binary number between 0 and 2N−1. We can use this as a

convenient representation of our basis

|0〉b ≡ |000 . . . 00〉, |1〉b ≡ |000 . . . 01〉, |2〉b ≡ |000 . . . 10〉, |3〉b ≡ |000 . . . 11〉, . . . ,

where we have placed a b in the subscript of the new basis to distinguish it from the old

one. Now, consider the state

|Ψ〉 = 1

2N/2

2N−1∑

j=0

pj |j〉b, (6.17)
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where pj is a number that can be either 1 or −1. There are 22
N−1 such states (since there

are 2N coefficients, but states that are the same up to an overall minus sign are equivalent)

but let us consider a “typical state” in this set — where we pick the pj coefficients with

an equal probability to be either 1 or −1.

In doing so, we are not considering the ensemble of states formed by the various choices

of the pj . We make some choice, and then consider the pure state |Ψ〉 corresponding to this

choice. In speaking of a “random” choice above, we are merely pointing out that for our

purposes the precise choice of the sequence pj is not important, and most choices will work.

Now, if we consider the reduced density matrix corresponding to the first spin, we

find that we have

ρ1 =
1

2N




2N−1−1∑

j=0

p22j |0〉〈0|+ p22j+1|1〉〈1|+ p2jp2j+1

(
|0〉〈1|+ |1〉〈0|

)

 (6.18)

=
1

2

(
|0〉〈0|+ |1〉〈1|+O

(
2−

N
2

)(
|0〉〈1|+ |1〉〈0|

))
. (6.19)

Here, in the last step we have used the fact that successive pj coefficients are uncorrelated.

Depending on the precise choice of the pj coefficients, that we started out with, we will

get different values for 1
2N

∑
p2jp2j+1. However, for a typical state, we expect this value

to be of the order 2−
N
2 .17

Thus we see that for “typical states”, the density matrix of the first spin is very

close to the density matrix predicted by Hawking. The full density matrix is also of the

form (6.15). However, the corrections become important once we start considering (in this

example) N
2 spins.

Thus if the dynamics of this spin chain naturally leads it to one of these typical states,

then its evaporation will appear much like Hawking radiation. By a basis change, we can

transform ρcorr into precisely the form (6.16).

However, this is not sufficient. Indeed, as we pointed out above, a key feature of

Hawking radiation is that for each emitted photon, there is also an “ingoing photon”

that can perhaps be observed by an observer inside the black hole. The two photons are

maximally entangled; each of them individually looks thermal but taken together they form

a pure state. We referred to this feature in (6.6) above.

From our construction of the Õ operators above, we know how to construct the ingoing

bit. To make this more precise, let us assume that in a “coarse-grained” description we can

observe the first p bits of the N qubits in the toy model above. We assume that the other

N−p bits are much harder to observe and enter only in the “fine grained” description of the

system. In the same notation as above, we can write down a basis for both of these spaces

coarse: |i〉c, with 0 ≤ i ≤ 2p − 1

fine: |j〉f, with 0 ≤ j ≤ 2N−p − 1.

17For a very few states, this value can be close to 1, but these states are not “typical” and do not meet

our purpose.
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The subscripts c and f emphasize that these are in a different vector space, from the space

we used to describe the full system above. Now the state |Ψ〉 can clearly be written as

|Ψ〉 =
∑

i,j

aij |i, j〉 =
∑

i

|i〉c ⊗ |φi〉f,

where |i, j〉 ≡ |i〉c ⊗ |j〉f and
|φi〉f ≡

∑

j

aij |j〉f.

Let us call S1 the operator acting on the first spin as the Pauli matrix σ3 =

(
1 0

0 −1

)
.

With this notation, the operator S̃1 in this basis can be written as

S̃1 = Ic ⊗




2p−1∑

i=2p−1

|φi〉〈φi| −
2p−1−1∑

i=0

|φi〉〈φi|


 , (6.20)

where Ic is the identity on the coarse-grained space.

Note that the definition of S̃1 depends not only on the state |Ψ〉 but also on our division

of the space into a coarse-grained and a fine-grained part. This operator S̃1 commutes with

all operators in the coarse-grained space as is evident from (6.20)

[S̃1, Sm] = 0, for 1 ≤ m ≤ p.

Moreover, in the state |Ψ〉 measurements of S1 are precisely anti-correlated with measure-

ments of S̃1. Similarly, we can define operators S̃2, . . . S̃p that are anti-correlated with

S2 . . . Sp respectively, and also commute with all the ordinary operators.

It is also important to recognize where this process breaks down. Once we expand

our description of the coarse-grained system to p = N
2 , then the construction above is no

longer possible; there is simply not “enough space” in the fine-grained space.

Before we conclude this section, we would like to emphasize that this toy model holds

important lessons for what happens in the real black hole. First it shows us how expo-

nentially suppressed corrections can conspire, in an equally large Hilbert space, to restore

unitarity to a seemingly thermal density matrix. Second, this system also gives us a toy

model of black hole complementarity. As long as less than half the spins have been mea-

sured, it is possible to pair each emitted spin with a perfectly anti-correlated and indepen-

dent degree of freedom in the remaining spins. This is analogous to the statement that as

long as we are measuring a suitably limited number of observables, there is no difficulty in

describing the interior of the black hole as a separate space where semi-classical dynamics

holds. However, once we start probing the system very finely by going either to very high

energies, or with very heavy operators, the semi-classical spacetime description starts to

break down. This is precisely what happens in the spin model above.

7 Various technicalities

In this section, we discuss some subtle points of our construction.
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7.1 Stability of the reconstructed bulk operators/“spread of the transfer func-

tion”

A possible objection to our construction is the following: in Schwarzschild coordinates,

an infalling observer never crosses the horizon, since the point of crossing formally has

Schwarzschild time t → ∞. Moreover, the “time” of the gauge theory is naturally

identified with the Schwarzschild time in the bulk. These statements together may be

taken as an indication that in order to reconstruct local operators at and behind the

horizon, we need information from the gauge theory for all times. If true, this could be a

serious problem since we expect the late time behavior of pure states to have significant

variance due to Poincare recurrences and other kinds of statistical fluctuations, including
1
N corrections that might pile up over time.

The same conclusion seems to follow if one (wrongly) assumes that the support of the

operator φCFT(t,x, z) is mostly localized on the intersection of the boundary of AdS with

the spacelike cone emanating from the point (t,x, z). This (wrong) assumption seems to

suggest that as the point moves close to the horizon, the support of the operator spreads

over the entire boundary and moreover it becomes difficult to understand what happens

when the point moves behind the horizon.

Fortunately these arguments are not really correct and we will explain that the re-

constructed bulk observables φCFT(t,x, z) only require knowledge of the boundary fields

for (approximately) a finite interval in boundary time, which can be made parametrically

smaller, in the large N limit, from time scales related to fluctuations and recurrences.

We believe that our momentum space formulation helps us get a sharp sense of the

accuracy of our construction. In particular, the question above can be converted to the

following questions:

1. From a measurement of boundary correlators, with a given accuracy and over a cer-

tain time-scale, how accurately can we extract the modes Oω,k that we require above.

2. Can a small inaccuracy in the Oω,k modes get blown up to a large inaccuracy in the

reconstructed bulk fields φCFT.

Let us start with the first question. Let us say that we measure the correlator on

the boundary for a finite time interval [0, T ]. (It is trivial to do a similar analysis for the

spatial coordinates, but for simplicity, we focus on time here.) Moreover, the observer

samples this correlator at short-time intervals tuv, 2tuv, . . . for a total number of samples
T
tuv

. (We will take this to be an integer to lighten the notation.) Using this procedure how

accurately can we discern the various frequencies?

Let us say that the original correlator is C(t) =
∫
Cωe

−iωt. By doing a discrete Fourier

transform using the sample points above, we can measure the frequency modes

Ĉ

(
2πν

T

)
=
tuv
T

T
tuv

−1∑

j=0

∫
Cωe

−iωj
T e

2πiνj
T dω =

∫
CωRωdω (7.1)

with

Rω =
tuv
T

eiT (2πν−ω) − 1

eituv(2πν−ω) − 1
. (7.2)
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Figure 7. Rω with ν = 1.

We remind the reader (see figure 7) that if ωt ≪ 1 and ωT ≫ 1, then Rω is a sharply

peaked function with a maximum of 1 at ω = 2πν.

On the other hand, if ω is a very low frequency — signals at ultra-low frequencies can

be produced by phenomena like Poincare recurrence — then (7.1) is negligible except at

ν = 0. So these frequencies do not contaminate the measurement of Fourier modes with

higher frequencies.

Similarly, (7.1) also tells us that if we wish to measure the Fourier mode to some

accuracy 1
Nα , then we can do that by measuring the real-time signal to the same accuracy

— we do not require any parametric enhancement of accuracy at low frequencies.

So we reach the expected conclusion it is possible measure the Fourier modes of the

operator Oω,k between some IR-cutoff 1
T and some UV-cutoff 1

tuv
to any given accuracy by

sampling position correlators at intervals smaller than tuv and for a length of time larger

than T , with the same accuracy.

Having now established that the Fourier modes Oω,k can be measured in principle,

the next question has to do with whether low frequency modes become very important

near the horizon. In order to do that we consider the bulk 2-point function of our local

operators φCFT(t,x, z).

7.1.1 Outside the horizon

First we start with points outside the horizon. We have

1

Zβ
Tr
(
e−βHφCFT(t1,x1, z1)φCFT(t2,x2, z2)

)

= (2π)d
∫

ω>0

dω

(2π)2ω

dd−1
k

(2π)d−1

[
f̂ω,k(t1,x1, z1)f̂

∗
ω,k(t2,x2, z2)

eβω

eβω − 1

+ f̂∗ω,k(t1,x1, z1)f̂ω,k(t2,x2, z2)
1

eβω − 1

]

Here we used the definition of the bulk operators (4.14) and the thermal expectation

values of the Fourier modes Ôω,k that we discussed around equation (4.7). Remember that
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the hatted modes f̂ω,k(t,x, z) are those which are canonically normalized with respect to

the Klein Gordon norm.

The question about the late-time sensitivity is a question about the region of this

integral around ω = 0. First we notice that we have an explicit factor of 1
ω . Second, the

thermal factors eβω

eβω−1
and 1

eβω−1
both go like 1

βω for low ω. Third, the modes have the

property that for fixed (t,x, z) we have that f̂ω,k(t,x, z) goes to zero linearly with ω for

small ω. This can be verified explicitly in the case of the modes on a BTZ background (see

appendix A) but is also true for other black holes. All in all we find that if we keep the

points fixed and consider low ω, the integrand goes like ω0 and hence the integral converges.

Since the integral is convergent in the limit ω = 0, it means that the sensitivity of

the operator φCFT(t,x, z) to the region of small ω (or equivalently “late-time” in position

space) is actually small. In order to demonstrate this let us consider the order of various

limits a bit more carefully. Let us consider the reconstructed local bulk operator (4.13),

but with the inclusion of an IR cutoff δ in frequency space

φδCFT(t,x, z) ≡
∫

ω>δ

dωdd−1
k

(2π)d

[
Oω,k fω,k(t,x, z) +O†

ω,k f
∗
ω,k(t,x, z)

]

The operator φδCFT is not exactly the same as our original operator φCFT(t,x, z) = φδ=0
CFT

defined in (4.13). However, since the integral is convergent in the region of ω = 0, the

difference between correlation functions of φδCFT and correlation functions of φδ=0
CFT goes to

zero as δ → 0.

Coming back to the question about the sensitivity to the details of the pure state:

suppose we want to reconstruct the bulk with some “resolution” ǫ (which we take to

be N -independent). For any given ǫ there is an IR cutoff δ, such that the correlators of

φδCFT(t,x, z) reproduce those of a local bulk field up to the accuracy ǫ, if the boundary corre-

lators agreed with the thermal ones, down to the IR frequency cutoff δ. But for any given and

fixed IR cutoff δ in frequency space, we can take N to be large enough, so that the boundary

correlators on a typical pure state agree with those of the thermal ensemble down to ω ≈ δ.

Putting everything together, we find that for any desired “resolution ǫ”, it is possible

to take N to be large enough and to ensure that the details of the typical pure state

become unimportant.

7.1.2 Inside the horizon

In order to reach the same conclusion for points behind the horizon, we need to demon-

strate that the integral over ω in the 2-point function for points behind the horizon, is

well-behaved around ω = 0. Here the situation is more interesting. The reconstructed

bulk operator is given by (5.12), that is

φIICFT(t,x, z) =

∫

ω>0

dωdd−1
k

(2π)d

[
Oω,k g

(1)
ω,k(t,x, z) + Õω,k g

(2)
ω,k(t,x, z) + h.c.

]

When computing the 2-point function of this operator we find several contributions

coming from the 2-point functions of the “usual” modes Oω,k, from the 2-point functions

of the “tilde” modes Õω,k, as well as from cross-terms between the two.
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If we focus on the contribution to the 2-point function coming from the terms

〈Oω,kO†
ω′,k′〉β and 〈O†

ω,kOω′,k′〉β we find that the integral over ω is divergent from the

ω = 0 region. This is the Fourier-space manifestation of the arguments mentioned in the

first two paragraphs of this section. It might seem that this small ω divergence would

invalidate our claims.

However, instead of focusing only on some of the terms contributing to the 2-point

function, if we consider the contribution from all terms together, i.e. including the “tilde”

modes (and the cross terms) we find that the integral over small ω becomes convergent!

The divergence encountered above when considering the modes Oω,k alone, disappears

when we consider both Oω,k and Õω,k together!

This means that there is a specific way to reorganize the terms in the integral over

ω, so that the integral becomes manifestly convergent for small ω. It turns out that if we

group together the modes Oω,k with the Õω,k in the natural “Kruskal” combinations

K(1)
ω,k =

Oω,k − e−
βω
2 Õω,k√

1− e−βω
, K(2)

ω,k =
Õ†

ω,k − e−
βω
2 O†

ω,k√
1− e−βω

then the integral is manifestly convergent for small ω. The Kruskal creation operators are,

of course, just given by the Hermitian conjugates of the relations above.

As a matter of fact, this situation can also be studied in the case of Rindler space,

where the modes are easy to write down explicitly. We present the analysis in appendix B.

In Rindler space, when computing the 2-point function for points behind the “Rindler

horizon”, we find the same small ω divergence, when considering the contribution from

only one set of modes. We can check explicitly that the divergence disappears if the modes

are grouped together in the “Unruh modes”. The relation between the Unruh and the

Rindler modes given in (B.5) is precisely the same as the relation between the Kruskal

and the AdS-Schwarzschild modes above.

To summarize, for points behind the horizon the integral over small ω is still

convergent, which means that the sensitivity of the bulk 2-point function to the low ω

(or late time) boundary correlators is small. The argument about the order of limits

mentioned in the previous subsection can be repeated in identical form, and we conclude

that the reconstructed black hole region II is — in the large N limit — insensitive to the

details of the specific pure state.

7.1.3 What happens exactly on the horizon?

At the horizon, the mode functions do not diverge but they start oscillating very rapidly.

We can see this from the formula (4.18). Near the horizon, in terms of the coordinates U

and V defined in section 3.2, the modes are simply

f̂ω,k = eik·x
(
eiδω,ke

−2πz0ω
d U

2iz0ω
d + e−iδω,kV

−2iz0ω
d

)

Let us say that we have been able to measure boundary modes accurately up to some

frequency 2d
z0Nα . (z0 is a natural scale since it also sets the temperature.) Near the future

horizon, which is at U = 0, modes below this frequency become important only for

ln(U) ∼ −Nα ⇒ U ∼ e−Nα
. (7.3)
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It is only in this region that our construction starts to develop inaccuracies.

In fact the proper time taken by the infalling observer to cross the region (7.3) is itself

exponentially suppressed in N . It is unclear to us whether it is possible even, in principle,

to speak of the experience of the infalling observer over such a short time scale. If we

average over the experience of the observer as he crosses the black hole, over some time

scale that is larger than this — even a time scale that is power law suppressed in N and

scales like O
(

1
Nα

)
— then we see that the tiny frequencies that we have neglected on the

boundary do not cause any difficulties.

7.2 Pure vs thermal states

A tacit assumption in our analysis in sections 5 and 4 was that correlators of the operator

φCFT(t,x, z) in a “typical” heavy pure state are the same as its correlators in the thermal

ensemble. This is consistent with general intuition from statistical mechanics and it was

on this basis that we concluded that an infalling observer will not notice anything special

as he falls through the horizon, when the black hole is in a pure state.

The argument from the beginning of section 6.1 provides further weight to this

expectation. In that section, we argued that if correlators of light operators factorize on

a typical heavy pure state then these correlators cannot be used to distinguish between

various typical pure states |Ψ〉 in the thermal ensemble. More precisely, our arguments

suggest that by measuring these correlators to an accuracy 1
Nα , we could divide these pure

states into O (Nα) different classes but still not pinpoint which one we are in since there

are O
(
e−N

)
different states in the ensemble.

But, how do we know that factorization holds in a pure state? Even if factorization

holds for thermal correlators — and we might be able to make an argument for this by

applying the usual power counting arguments to the Feynman diagram expansion of these

correlators in the Schwinger-Keldysh formalism — it is not obvious that this carries over

to pure states.

However, the argument for this is simple. The key point is that the question of how

different an observable A is, on a typical pure state, from the same observable on the

thermal ensemble, is a question about the variance of the observable across the ensemble

of all pure states. This can be estimated from computing the thermal expectation value of

the square of the observable.

In other words the variance of A across different pure states can be related to the

following quantity which can be computed within the thermal ensemble

1

Zβ
Tr(e−βHA2)− 1

Z2
β

Tr(e−βHA)2 (7.4)

Let us apply this measure to the observable

A = Oω1,k1
Oω2,k2

Oω3,k3
Oω4,k4

− 1

Z2
β

Tr
(
e−βHOω1,k1

Oω2,k2

)
Tr
(
e−βHOω3,k3

Oω4,k4

)
− . . . ,

where . . . indicate the other products of two point functions that enter here. Then the fact

that the expectation value of A and its powers vanishes in the thermal ensemble up to 1
N

means that no “appreciable” class of pure states can have non-vanishing A.
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One might also wonder about the significance of O (1) variance of the operators given

in (4.7) and (4.8). In fact this variance has a natural semi-classical interpretation: it

just indicates the statistical fluctuations in the thermal gas of particles that surround the

black hole. These fluctuations do not modify the leading order geometry, since they are an

O(1) and not O(N2) effect and thus cannot backreact in the large N limit. Moreover the

amount of information contained in them, as we argued before, is parametrically smaller

than that of the entropy of the black hole itself.

7.3 Definition of tilde operators

As the reader will have noticed, the construction of the Õ operators in section 5 suggests

that the precise Heisenberg operators Õ that an observer will encounter may differ quite

significantly depending on which pure state the black hole is in. The important point

is that this non-uniqueness is unimportant from an operational point of view. The bulk

observer lives in a particular black hole microstate. By measuring correlators that involve

a finite number of bulk fields φ, the observer can only infer that the Õ operators effectively

satisfy the same algebra as the O operators. The reader may wish to consult the toy model

in section 6.2.3 for an explicit construction of the Õ operators, where this dependence on

the state and its operational insignificance can both be seen.

The Õ operators also depend on the specific division of the CFT Hilbert space into a

coarse and a fine grained part. Once again, this dependence is not operationally significant.

This property can also be seen in the toy model of section 6.2.3.

7.4 Do our operators describe the “real” infalling observer?

A question that we have commonly encountered is: “how do we know that this description

corresponds to the ‘real’ experience of the infalling observer.”

Before we address this, let us briefly emphasize a philosophical point, which is uncon-

troversial and even seemingly banal. Let us say that we are given a quantum system Q and

that in some approximation the accessible observables in this system can be re-organized

into observables φ(i)(x), where x are points on some manifold M and, and i is some index

that labels the operator in question. Moreover if the correlators of these operators are

the same as the correlators of perturbative fields propagating on M, then the system Q is

indistinguishable from the system describing perturbative fields on M.

In this paper, we have shown that the natural observables of a CFT with large N

factorization can be reorganized, at leading order, into the correlators of a non-local CFT

operator φCFT(t,x, z), which is labeled by points in AdS (or an AdS black hole). All the

accessible dynamical processes of the CFT can be given a description in terms of these

perturbative fields propagating on AdS (black hole).

Ultimately, ontological questions cannot really be settled by physics. However, we hold

that such a situation is indistinguishable from a “true” perturbative field propagating in

this spacetime. So our operators do describe the “real” infalling observer.

– 54 –



J
H
E
P
1
0
(
2
0
1
3
)
2
1
2

7.5 Uniqueness of our construction and interactions

We now turn to the issue of the uniqueness of our construction, which is something that

we glossed over above. In fact, even at (2.11), the reader could have asked: “what impels

us to multiply the creation and annihilation operators with the modes inside anti-de Sitter

space. Why can’t we choose modes from some other spacetime.” Of course, the AdS/CFT

correspondence tells us that any other spacetime will not work. Already at this level, we

see that if we would like the bulk theory to realize the symmetries of the boundary in a

natural way (as isometries), then we should choose modes from anti-de Sitter space.

Furthermore, we believe that if we choose a different spacetime then we will not be

able to correct our prescription at subleading orders in 1
N consistent with locality. We can

see the difficulty immediately. While writing down (2.11), we emphasized that one reason

it worked was because we did not have to worry about the “spacelike” modes Oω,k at

leading order in perturbation theory. However, if we go even to 1
N , we cannot consistently

neglect these modes and, in fact, their presence will lead to a conflict with locality as was

explored in [80]. Let us briefly describe how this problem can be fixed and how we can

extend our construction to higher orders in 1
N .

Our argument is somewhat indirect. It is believed that if we take a consistent interact-

ing CFT with various conditions on its operator spectrum (such as the presence of only a

small number of operators at low dimensions) then we should be able to write down a bulk

interaction in anti-de Sitter space that reproduces any set of boundary correlators [38, 81–

84]. Of course, implementing this procedure in practice is quite difficult but schematically

let us say that we have constructed the bulk Lagrangian that reproduces the boundary

correlators. For the operator O under consideration, let us say that it is of the form:

Lbulk =

∫ √−g [∂µφ∂µφ− V (φ)] ,

where V (φ) has a perturbative expansion in powers of 1
N .

Then, as was discussed in [37, 80, 85] it is possible to correct our prescriptions above

perturbatively in the interaction. We now simply start solving the Heisenberg equations

of motion:

�φ = V (φ).

with the zeroth order solution φ0 taken to be (2.11) or, in the black hole background, to

be (5.12). So, with the bulk Green function G(x, y) where x, y are bulk points, at first

order we have:

φ1(y) =

∫
G(x, y)V (φ0)dy,

where, of course, at this order only the lowest order terms in 1
N in V (φ0) contribute. We

can, of course, keep track of the higher order terms and use the solution φ1 to repeat this

procedure at any order in perturbation theory. The Heisenberg field that we obtain in

this way is manifestly local.

The point, of course, is that if we are not in AdS we cannot write down a bulk in-

teraction consistent with boundary correlators and so we do not have an algorithm for
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extending our construction to higher orders in 1
N . This is, of course, not a proof but is

highly suggestive. We would like to explore this further in future work.18

8 Conclusions and further directions

Let us summarize the implications of our construction. Since the paper is already quite

long we will be as brief as possible.

In what follows it is important to keep in mind that our precise results apply to a black

brane or a big black hole19 in AdS, neither of which evaporate. We leave it to the reader to

decide how relevant the following conclusions are for black holes in asymptotically flat space.

Reconstructing local bulk observables outside the black hole: we revisited the

construction of local operators near a big AdS black hole. At large N it is straightforward

to write CFT operators which reconstruct local bulk fields. We pointed out that a

divergence which appears when attempting to write a transfer function in position space,

is a harmless artifact — effectively “regularized” by the general behavior of boundary

thermal correlators — and can be evaded by working with the operators in momentum

space. In particular, there is no need for an analytic continuation along the spacelike

directions of the boundary. The construction of local bulk observables outside the black

hole seems to be robust under the inclusion of 1/N corrections.

Reconstructing the region behind the horizon: we argued that in certain theories,

including large N gauge theories, there is a natural splitting of the Hilbert space into

coarse- and fine-grained components. Typical pure states have the property that they

“self-thermalize”, i.e. the reduced density matrix of the coarse-grained Hilbert space is

automatically driven by the dynamics very close to the thermal one. In such a situation,

for every operator acting on the coarse-grained Hilbert space, it is natural to identify a

“partner” operator acting on the fine-grained Hilbert space. These partner operators obey

an identical algebra as the coarse-grained operators, and can be identified with the “tilde”

operators in the “thermofield doubled Hilbert space” formalism. Using these partner

operators we can reconstruct local bulk observables behind the horizon of the black hole.

We argue that, despite what one might naively expect, local bulk observables behind the

horizon are essentially supported over finite time scales on the boundary and hence —

in the large N limit — they are not too sensitive on the specific microstate. This implies

that the “interior geometry” (as probed by low-energy experiments) looks the same for all

pure states, in contradiction with (some versions of) the fuzzball proposal.

18In fact the example of conformal gravity [86] is already subtle. In this example, it was shown that it

is possible to reproduce correlators in AdS4/CFT3 with ordinary Hilbert-Einstein gravity in the bulk by

consider another theory on flat space (cut off in one direction at z = 0) but with the Lagrangian of conformal

gravity. We expect that this is only a tree-level coincidence and cannot be extended to higher orders in 1
N
.

19Although, for notational reasons, we presented the results for a black brane it should be clear that

similar local bulk observables can be defined for a big black hole in global AdS, by replacing the integrals

over k with sums over spherical harmonics.
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Fate of the infalling observer: from these results it follows that a semi-classical ob-

server falling cross the horizon of a big black hole, will not measure anything special. In

particular he will not see a firewall or a fuzzball. Our precise prediction is the following.

If we first fix: i) the size of the black hole in AdS units, ii) the trajectory of the infalling

observer and the points at which he will measure the local fields, iii) the number of measure-

ments he can make and the accuracy he has iv) the type (mass) of fields that he can measure

and then send N to infinity (i.e. we do not scale any of the previous quantities with N),

then the observer will not notice any difference from semi-classical GR. Whether this is con-

sistent or not with the fuzzball proposal depends on its precise definition. However, to the

extent that the fuzzball proposal posits a departure from semi-classical GR at energy scales

of the order of the temperature of the black hole, our construction seems to contradict it.

Lessons about the information paradox: we argued that, contrary to the claims

of [1] and [6], small corrections to the Hawking computation can restore unitarity. The cor-

rections suggested by our construction are small in the sense that low point correlators of

perturbative fields are almost exactly the same as those computed by semi-classical quan-

tum gravity. The intuitive reason that this is consistent with the unitarity of the Hawking

process is that the number of emitted Hawking particles is large, so even small correlations

between them can carry away the information. The works of [1] and [6], claimed that this is

not possible by invoking the strong subadditivity theorem applied to particles located both

inside and outside the black hole. Our construction of local bulk observables, explicitly

demonstrates that the semi-classical Hilbert spaces corresponding to the interior and exte-

rior of the black hole are not independent and hence it is not permissible to use the strong

subadditivity theorem. We discussed this in the context of a simple qubit toy model. Our

construction suggests a form of “black hole complementarity” from the point of view of the

boundary conformal field theory, which would be interesting to understand in more detail.

Future work: clearly there are many questions that need to be explored in more detail.

An obvious one is to understand how to extend the reconstruction of the bulk in perturba-

tion theory in 1/N . We would like to further investigate the properties of the tilde oper-

ators, the splitting of the Hilbert space into coarse- and fine-grained components and the

conditions under which an isolated quantum system can undergo thermalization. We hope

to revisit this question in future work. It would be nice to find a more realistic dynamical

toy-model that would capture the essential features of complementarity. Finally, given that

we have constructed local bulk observables behind the horizon, it would obviously be inter-

esting to study what happens when the bulk point approaches the black hole singularity.
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A Thermal correlators in 2d CFTs

A.1 Modes in a BTZ black hole

In our discussion above we frequently referred to modes in the black hole background.

In this appendix, we explore these modes in the background of a BTZ black hole. This

will allow us to check several claims including their behaviour near the horizon and their

growth for large spacelike momenta that we made above.

Let us start with the usual BTZ coordinates

ds2 = −(r2 − r2h)dt
2 + (r2 − r2h)

−1dr2 + r2dx2.

The horizon is at rh and x runs from −∞ to +∞ i.e. we are looking at a planar BTZ black

hole. The temperature of the black hole is

β =
2π

rh

We consider a massive scalar whose dual operator has dimension ∆, obeying the equation

(�−m2)φ = 0

Solving the KG equation with an ansatz of the form e−iωteikxψ(r) we find two linearly

independent solutions

ψ1(r) =

(
r2

r2h

)a(
r2

r2h
− 1

)b

2F1

(
1 + a+ b− ∆

2
, a+ b+

∆

2
, 1 + 2b, 1− r2

r2h

)

ψ2(r) =

(
r2

r2h

)a(
r2

r2h
− 1

)−b

2F1

(
1 + a− b− ∆

2
, a− b+

∆

2
, 1− 2b, 1− r2

r2h

)

where

a =
ik

2rh
b =

iω

2rh
For any given ω, k only a specific linear combination of these modes is normalizable at

infinity. Using hypergeometric identities we find that the normalizable combination is

ψ1(r)−
[
Γ(1 + 2b)Γ(a− b+ ∆

2 )Γ(−a− b+ ∆
2 )

Γ(1− 2b)Γ(−a+ b+ ∆
2 )Γ(a+ b+ ∆

2 )

]
ψ2(r)
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Using some hypergeometric identities and fixing the overall normalization we can rewrite

the normalizable mode as

ψ̂ω,k(r) =
1

Γ(∆)
√
rh

√
Γ(a+ b+∆/2)Γ(a− b+∆/2)Γ(−a+ b+∆/2)Γ(−a− b+∆/2)

Γ(2b)Γ(−2b)

×
(
r2

r2h

)a(
r2

r2h
− 1

)−a−∆
2

2F1

(
a− b+∆/2, a+ b+∆/2,∆,

r2h
r2h − r2

)

The overall normalization was fixed so that the modes are canonically normalized with

respect to the Klein Gordon norm, which is why we use the hatted notation — as discussed

in section 3.3. In particular, near the horizon we have the expansion20

ψ̂ω,k(r) = r
−1/2
h

(
eiδω,keiωr∗ + e−iδω,ke−iωr∗

)
(A.1)

where r∗ is the tortoise coordinate (in which horizon is at r∗ → −∞)

r∗ =
1

2rh
log

(
r − rh
r + rh

)

and the “phase shift” is

eiδω,k = 4b

√
Γ(−2b) Γ(a+ b+∆/2) Γ(−a+ b+∆/2)

Γ(2b) Γ(−a− b+∆/2) Γ(a− b+∆/2)

To be more precise the complete bulk mode is

f̂ω,k(t, x, r) = ψ̂ω,k(r)e
−iωteikx (A.2)

here both the frequency ω and the momentum k are continuous.

For the bulk operator field we have

φ(t, x, r) =

∫

ω>0

dω dk

(2π)2
1√
2ω

(
aω,kf̂ω,k(t, x, r) + h.c.

)
(A.3)

with

[aω,k, a
†
ω′,k′ ] = δ(ω − ω′)δ(k − k′)

In the AdS Hartle-Hawking state we have

〈aω,k a†ω′,k′〉HH =
eβω

eβω − 1
δ(ω − ω′)δ(k − k′)

〈a†ω,k aω′,k′〉HH =
1

eβω − 1
δ(ω − ω′)δ(k − k′)

Using these formulas we can compute the bulk 2-point function and then by taking the

bulk points to the boundary, we can recover the boundary 2-point function

Gβ(t, x; t
′, x′) = lim

r,r′→∞

[
Υ2r∆(r′)∆〈φ(t, x, r)φ(t′, x′, r′)〉HH

]
,

20The overall factor of r
−1/2
h in the near horizon normalization, is automatically fixed if we require the

modes defined by (A.1), (A.2) to have canonical Klein-Gordon norm.
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where Υ is given in (2.10). In momentum space, and using time- and space-translational

invariance we have

Gβ(ω, k) =

∫
dt dx eiωt−ikxGβ(t, x; 0, 0)

From the previous results we find

Gβ(ω, k)=Υ2 1

2π(2ω)

eβω

eβω−1

(
2π

β

)2∆−1
∣∣∣∣∣∣

Γ
(
iβ(ω+k)

4π +∆
2

)
Γ
(
iβ(ω−k)

4π +∆
2

)

Γ(∆)Γ
(
iβω2π

)

∣∣∣∣∣∣

2

, ω>0

(A.4)

and

Gβ(−ω, k)=Υ2 1

2π(2ω)

1

eβω−1

(
2π

β

)2∆−1
∣∣∣∣∣∣

Γ
(
iβ(ω+k)

4π +∆
2

)
Γ
(
iβ(ω−k)

4π +∆
2

)

Γ(∆)Γ
(
iβω2π

)

∣∣∣∣∣∣

2

, ω>0

(A.5)

Actually although the two forms above are useful to see the qualitative properties of the

solution we can rewrite them in a simpler form using

∣∣∣∣Γ
(
i
βω

2π

)∣∣∣∣
2

=
2π2

β|ω|
1

e
β|ω|
2 − e

−β|ω|
2

(A.6)

This leads to the expression

Gβ(ω, k) =
Υ2

(2π)2
e

βω
2

(
2π

β

)2∆−2
∣∣∣∣∣∣

Γ
(
iβ(ω+k)

4π + ∆
2

)
Γ
(
iβ(ω−k)

4π + ∆
2

)

Γ(∆)

∣∣∣∣∣∣

2

, (A.7)

and this expression is valid for ω both positive and negative.

In the next subsection we will rederive these expressions from the boundary CFT, using

the constraints from 2d conformal invariance. Here we notice that these results manifestly

satisfy the general properties we mentioned in section 4:

i) It is obvious from the expressions above that the KMS condition is satisfied

G(−ω, k) = e−βωG(ω, k)

ii) It can be checked that the 2-point function G(ω, k) is exponentially suppressed for

large spacelike momenta, that is for fixed ω and large k we have

G(ω, k) /
|k|→∞

e−
βk
2

as expected from our general arguments in section 4.2.

iii) It can be checked that in the limit of low temperature (β → ∞) the thermal

Wightman function Gβ(ω, k) reduces to the zero-temperature one that we found in

section 2, that is

Gβ(ω, k) ≈ N∆ θ(ω) θ(ω
2 − k2) (ω2 − k2)∆−1, for β → ∞
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A.2 Boundary correlators in 2 dimensions

The two dimensional CFT correlator at finite temperature, can be completely fixed us-

ing conformal invariance and we will rederive the results (A.4), (A.5) directly from the

boundary. We start with the Euclidean correlator. We put the CFT on R
1 × S

1 where the

perimeter of the circle is β. We then have

〈O(τ, x)O(0, 0)〉β =

(
2π

β

)2∆ [
2 cosh

(
2πx

β

)
− 2 cos

(
2πτ

β

)]−∆

(A.8)

By taking the short distance expansion we can check that the normalization is correct.

However, we can now use modular invariance and understand this to be the thermal cor-

relator of a CFT on flat space at an inverse temperature β.

Now, let us continue to Lorentzian space, following the same logic as in section 2. (See

also [87].) We find that the time-ordered correlator is given by

〈T {O(t, x),O(0, 0)}〉β =

(
2π

β

)2∆ [
2 cosh

(
2πx

β

)
− 2 cosh

(
2π(1− iǫ)t

β

)]−∆

and for the Wightman correlator, we have

〈O(t, x),O(0, 0)〉β =

(
2π

β

)2∆ [
2 cosh

(
2πx

β

)
− 2 cosh

(
2π(t− iǫ)

β

)]−∆

=

(
2π

β

)2∆

2−2∆

[
sinh

π(u− iǫ)

β
sinh

π(v − iǫ)

β

]−∆

where we defined u = t− x, v = t+ x. So, the basic integral that we are interested in is

Iβ(k+) =

(
2π

β

)∆

2−∆

∫ ∞

−∞
eik+u

(
sinh

π(u− iǫ)

β

)−∆

du (A.9)

Let us understand the qualitative properties of this integral. We see that the integral

has branch cuts running along the segments (−∞+ inβ + iǫ, inβ + iǫ) for integer n. Now,

if k+ > 0, then we can move the u contour down to the first branch cut, which is at

Im u = −iβ. So, for negative k+, we get a contribution proportional to e−k+β i.e. the

integral is exponentially damped for large negative k+. On the other hand, for positive

k+, there is no such damping.

To evaluate the integral precisely, we write it as

Iβ(k+) =

(
2π

β

)∆

2−∆

[
eiπ∆

∫ 0

−∞
du eik+u

∣∣∣∣sinh
πu

β

∣∣∣∣
−∆

+

∫ ∞

0
du eik+u

∣∣∣∣sinh
πu

β

∣∣∣∣
−∆
]
,

(A.10)

– 61 –



J
H
E
P
1
0
(
2
0
1
3
)
2
1
2

where the phase factors come from the iǫ prescription explained in section 2. This integral

can be performed analytically to obtain

Iβ(k+) =

(
2π

β

)∆ π2β

4

csc(π∆)

Γ(∆)


eiπ∆

Γ
(
1
2

(
ik+β
π +∆

))

Γ
(
ik+β
2π − ∆

2 + 1
) +

Γ
(
1
2

(
∆− ik+β

π

))

Γ
(
− ik+β

2π − ∆
2 + 1

)




=

(
2π

β

)∆ π3β

4

(
coth

(
1
2(k+β + iπ∆)

)
+ 1
)
csch

(
1
2(k+β − iπ∆)

)

Γ
(
− ik+β

2π − ∆
2 + 1

)
Γ
(
ik+β
2π − ∆

2 + 1
)
Γ(∆)

=

(
2π

β

)∆−1 π2

2

e
iπ∆+k+β

2 Γ
(
∆
2 + ik+β

2π

)
Γ
(
∆
2 − ik+β

2π

)

Γ(∆)
.

(A.11)

Since the full answer for the Green function is given by

Gβ(ω, k) = Iβ

(
k + ω

2

)
Iβ

(
k − ω

2

)
, (A.12)

and since, in this case Υ2 = 2π(2π)2, we see that our boundary calculation matches

precisely with the answer from the bulk up to a momentum and temperature independent

pre-factor.

B Quantization in Rindler space

B.1 Expansion in Rindler modes

We start with d+ 1 dimensional Minkowski space

ds2 = −dt2 + dz2 + dx2

and consider a massless scalar field obeying

�φ = 0

B.1.1 Region I

We first expand the field in modes in region I. In that region the Rindler coordinates

(τ, σ,x) are defined by t = σ sinh τ, z = σ cosh t. The metric looks like

ds2 = −σ2dτ2 + dσ2 + dx2

The field in region I has the expansion

φ(τ, σ,x) =

∫

ω>0

dωdd−1
k

(2π)d

[
1√
2ω
aω,ke

−iωτ+ikx 2Kiω(|k|σ)
|Γ(iω)| + h.c.

]

Notice that the Bessel function Kiω(|k|σ) is real.
We define the lightcone coordinates in Minkowski space

U = t− z

V = t+ z
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In region I we have U < 0, V > 0. In terms of the Rindler coordinates in region I we have

U = −σe−τ

V = σeτ

Considering the field expansion near the horizon between regions I and II we find

φ ≈
U→0

∫

ω>0

dωdd−1
k

(2π)d
1√
2ω
aωke

ikx
[
V −iωe−iδ + (−U)iωeiδ

]

+
1√
2ω
a†ω,ke

−ikx
[
V iωeiδ + (−U)−iωe−iδ

]

where the phase shift is

eiδ =

( |k|
2

)iω Γ(−iω)
|Γ(iω)| (B.1)

Due to the Riemann-Lebesgue lemma, when U → 0 terms like U−iω can be discarded. So

what is important is to keep the terms that depend on V only, and we have

φ ≈
U→0

∫

ω>0

dωdd−1
k

(2π)d
1√
2ω

[
aω,ke

ikxV −iωe−iδ + a†ω,ke
−ikxV iωeiδ

]
(B.2)

B.1.2 Region III

Here the coordinates are t = −σ sinh τ, z = −σ cosh τ . We notice that the Rindler time

τ runs opposite of the Minkowski time t. Also, notice that due to our parametrization we

still have σ > 0 even though z < 0 in region III. We expand the field as

φ(τ, σ,x) =

∫

ω>0

dωdd−1
k

(2π)d

[
1√
2ω
ãω,ke

iωτ−ikx 2Kiω(|k|σ)
|Γ(iω)| + h.c.

]

Notice that we have defined the modes ãω,k to multiply the function which is the conjugate

of the one before. We want to expand the field near the horizon between regions III and

II. Again in Minkowski lightcone coordinates we have

U = σe−τ

V = −σeτ

The horizon is now at V → 0. Following the same steps as for region I we find that near

the horizon the non-vanishing terms are

φ ≈
V→0

∫

ω>0

dωdd−1
k

(2π)d
1√
2ω

[
ãω,ke

−ikxU−iωe−iδ + ã†ω,ke
ikxU iωeiδ

]
(B.3)

the phase factor is again given by (B.1).
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B.1.3 Region II

Here we choose the Rindler coordinates as t = σ cosh τ, z = σ sinh τ . The horizon between

I and II is at τ → +∞. In terms of the lightcone coordinates we have

U = σe−τ

V = σeτ

We write the general expansion as

φ =

∫

ω>0

dωdd−1
k

(2π)d
1√
2ω

[
Aω,ke

−iωτ+ikxJiω(|k|σ) +Bω,ke
−iωt+ikxJ−iω(|k|σ) + h.c.

]

For the J Bessel functions as σ → 0 we have

Jiω(|k|σ) ≈
1

Γ(1 + iω)

( |k|σ
2

)iω

+ . . .

Now we are looking at the expansion closed to the horizon between I and II. There we have

U → 0, so we keep only the terms which depend on V and we find

φ ≈
U→0

∫

ω>0

dωdd−1
k

(2π)d
1√
2ω

[
Bω,k

Γ(1− iω)
eikx

( |k|
2

)−iω

V −iω + h.c.

]

Comparing with the expansion (B.2) we find that

Bω,k =
Γ(1− iω)Γ(iω)

|Γ(iω)| aω,k = −i
√

πω

sinh(πω)
aω,k

While, looking at the horizon between II and III we find

φ ≈
V→0

∫

ω>0

dωdd−1
k

(2π)d
1√
2ω

[
Aω,k

Γ(1 + iω)
eikx

( |k|
2

)iω

U iω + h.c.

]

Comparing with (B.3) we find

Aω,k =
Γ(1 + iω)Γ(−iω)

|Γ(iω)| ã†ω,k = i

√
πω

sinh(πω)
ã†ω,k

Putting everything together we find the expansion in region II

φ(τ, σ,x) =

∫

ω>0

dωdd−1
k

(2π)d
1√
2ω

√
πω

sinh(πω)

×
[
i ã†ω,k e

−iωτ+ikx Jiω(|k|σ)− iaω,ke
−iωτ+ikxJ−iω(|k|σ) + h.c.

]
(B.4)
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B.1.4 Bogoliubov transformation

Now we express the Rindler modes in terms of the Unruh modes d1,2ω,k. We have

d1ω,k =
aω,k − e−πω ã†ω,k√

1− e−2πω
, d2ω,k =

ãω,−k − e−πω a†ω,−k√
1− e−2πω

(B.5)

or inverting

aω,k =
d1ω,k + e−πω(d2ω,−k)

†

√
1− e−2πω

, ãω,k =
d2ω,−k + e−πω(d1ω,k)

†

√
1− e−2πω

(B.6)

The Minkowski vacuum |0〉 is defined by d1,2ω,k|0〉 = 0. The Rindler mode occupation levels

are

〈0|aω,ka†ω′,k′ |0〉=
e2πω

e2πω−1
δ(ω−ω′)δd−1(k−k′) , 〈0|a†ω,kaω′,k′ |0〉= 1

e2πω−1
δ(ω−ω′)δd−1(k−k′)

and similarly for the ãω,k modes.

B.2 2-point function in terms of Rindler modes

B.2.1 Region I

We can now write the usual Wightman 2-point function of a scalar field in terms of the

Rindler modes. For points in region I we have

〈0|φ(τ1, σ1,x1)φ(τ2, σ2,x2)|0〉 = (2π)d
∫

ω>0

dωdd−1
k

(2π)d

× 1

2ω

[
e2πω

e2πω − 1

4Kiω(|k|σ1)Kiω(|k|σ2)
|Γ(iω)|2 e−iωτ12+ikx12

+
1

e2πω − 1

4Kiω(|k|σ1)Kiω(|k|σ2)
|Γ(iω)|2 eiωτ12−ikx12

]

We are interested in the convergence of this integral in the region ω = 0. We have the

explicit factor of 1
2ω in front, the thermal occupation factors give another factor of 1

ω . The

Bessel function Kiω(z) goes to a non-zero constant as ω goes to zero, for fixed z. Finally

the factor 1
|Γ(iω)|2

goes like ω2 for small ω. All in all, the integrand goes like ω0 for small

ω and hence the integral converges when ω → 0.

B.2.2 Region II

Now let us consider two points behind the Rindler horizon i.e. in region II, using the

expansion (B.4). We have contributions of several bilinears made out of aω,k and ãω,k. If

focus on only the contributions from the bilinears 〈0|aω,ka†ω′,k′ |0〉 and 〈0|a†ω,kaω′,k′ |0〉 of the
non-tilde operators, we find the terms

(2π)d
∫

ω>0

dωdd−1
k

(2π)d
π

sinh(πω)

[
e2πω

e2πω − 1
Jiω(|k|σ1)J−iω(|k|σ2)e−iωτ12+ikx12

+
1

e2πω − 1
J−iω(|k|σ1)Jiω(|k|σ2)eiωτ12−ikx12

]
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For small ω (and fixed σ1, σ2) the Bessel functions go to nonzero constants, hence the

integrand goes like 1
ω2 and the integral diverges as

∫

ω>0

dω

ω2

This seems to suggest that the small ω region has a very large contribution to the 2-point

function, however we know that this cannot be the correct answer.

After all, the 2-point function that we are considering the the standard Wightman

function of a massless scalar field, which is obviously finite for two points in region II.

Hence it must be that, while the contributions from these two terms mentioned above are

formally divergent, the total contribution from all terms — that is from the non-tildes

and from cross terms — must be finite. There must be cancellations between the terms

that we have considered and the remaining terms.

In other words, if we regroup the terms correctly before doing the ω integral, the

resulting expression must be manifestly finite as we integrate down to ω = 0. It turns out

that regrouping the aω,k and ãω,k into the “Unruh combinations” (B.5) makes the integral

manifestly convergent. Indeed, substituting from (B.6) into (B.4) we find that the field in

region II can be written as

φ(τ, σ,x) =

∫

ω>0

dωdd−1
k

(2π)d
1√
2ω

√
πω

sinh(πω)

×
[
e−iωτ+ikx i

(
e−πωJiω(|k|z)− J−iω(|k|σ)√

1− e−2πω

)
d1ω,k + h.c.

]

+ terms involving d2ω,k

We have that

e−πωJiω(z)− J−iω(z) = − sinh(πω)H2
iω(z)

Hence we find

φ(τ, σ,x) =

∫

ω>0

dωdd−1
k

(2π)d

√
π

2
e

πω
2

[
− i e−iωτ+ikxH2

iω(|k|σ)d1ω,k + h.c.
]

+ terms involving d2ω,k

On the Minkowski vacuum we have d1,2ω,k|0〉 = 0. So the 2-point function for points in

region II becomes

〈0|φ(τ1, σ1,x1)φ(τ2, σ2,x2)|0〉=(2π)

∫

ω>0

dωdd−1
k

(2π)d
π

4
eπωe−iωt12+ikx12H2

iω(|k|σ1)H2
iω(|k|σ2)∗+

+ terms involving d2ω,k

In this form we notice that the contribution from d1ω,k is manifestly finite when integrating

all the way down to ω = 0. The same is true for the contribution from d2ω,k.
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