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Persistent contribution of unbound quasiparticles to the pair correlation in the continuum
Skyrme-Hartree-Fock-Bogoliubov approach
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The neutron pair correlation in nuclei near the neutron drip-line is investigated using the self-consistent
continuum Skyrme-Hartree-Fock-Bogoliubov theory formulated with the coordinate-space Green’s function
technique. Numerical analysis is performed for even-even N = 86 isotones in the Mo-Sn region, where the
3p3/2 and 3p1/2 orbits lying near the Fermi energy are either weakly bound or unbound. The quasiparticle states
originating from the l = 1 orbits form resonances with large widths, which are due to the low barrier height and
the strong continuum coupling caused by the pair potential. Analyzing in detail the pairing properties and roles
of the quasiparticle resonances, we found that the l = 1 broad quasiparticle resonances persist to feel the pair
potential and contribute to the pair correlation even when their widths are comparable with the resonance energy.

DOI: 10.1103/PhysRevC.83.054301 PACS number(s): 21.10.Gv, 21.10.Pc, 21.60.Jz, 27.60.+j

I. INTRODUCTION

Recently, interest has been focused on pairing properties of
neutron-rich nuclei near the drip-line. The most peculiar case
could be the firstly observed halo nucleus, 11Li, where two
neutrons forming the halo would not be bound to the nucleus if
the pair correlation was absent [1–4]. Similar examples are also
suggested in nuclei near the neutron drip-line in heavier mass
regions, e.g., possible giant halo structure (consisting of more
than two neutrons) which is predicted in Ca and Zr isotopes
by the self-consistent mean-field models [5–10]. A new aspect
in these examples is that the pair correlation occurs among
neutrons occupying unbound or weakly bound orbits with low
angular momentum l = 0 or 1 whose wave functions extend
far outside the nucleus due to the low (zero) centrifugal barrier.

A useful theoretical tool to study the pair correlation in the
weakly bound nuclei in all the mass regions, except the lightest
ones, is the coordinate-space Hartree-Fock-Bogoliubov (HFB)
approach [11–14], in which the quasiparticle wave functions
of weakly bound and unbound nucleons are described in the
coordinate-space representation. Indeed the pairing properties
in nuclei near the drip-line have been studied extensively
within the HFB scheme [8,15–25] as well as the relativistic
Hartree(-Fock)-Bogoliubov models [4–6,14,26–29]. The pair
correlation we deal with here is, however, a rather complex
and unresolved problem, and there exist controversial issues
concerning the roles of weakly bound and unbound orbits. For
instance, it has been argued in Refs. [21–24] that neutrons in
the weakly bound and unbound orbits with l = 0 and 1 tend to
decouple from the pair field generated by the other neutrons
because of the large spatial extension of their wave functions.
It is also claimed that those neutrons contribute very little to the
total pair correlation in nuclei. On the contrary, other studies

*mengj@pku.edu.cn

show large pairing effects even on the weakly bound neutrons,
leading to the pairing antihalo effect [30] and the increase of
the neutron pairing gap for weaker binding of neutrons or for
shallower neutron Fermi energy [17,18].

In this paper, we would like to present an investigation of the
pairing properties of nuclei close to the neutron drip-line, with
intentions to clarify the roles of weakly bound and unbound
orbits with low angular momenta.

To perform this study, there exist some physically and
technically important points which need to be treated carefully.
Firstly, precise description of the wave functions outside
the nucleus must be guaranteed since we deal with weakly
bound and unbound orbits. We achieve it in the present study
by using the coordinate-space mesh representation for the
Skyrme-Hartree-Fock-Bogoliubov model [12].

Secondly, also related to the first point, a suitable boundary
condition needs to be imposed on the wave functions of
the quasiparticle states in the continuum, which also have
a sizable contribution to the pair correlation in the case of
nuclei with a shallow Fermi energy close to zero. Note here
that the quasiparticle states whose excitation energy exceeds
the separation energy form the continuum spectrum because
they couple to scattering waves [11–13]. The Hartree-Fock
single-particle orbits emerge as resonant quasiparticle states
with finite width [13]. To describe this situation, one needs
to guarantee the asymptotic form of the quasiparticle wave
function as the scattering wave. In this way, we can avoid
artificial discretization of the continuum spectrum, and can
evaluate the width of a resonant quasiparticle state. This
allows us to investigate how the resonant quasiparticle states
contribute to the pair correlation.

Thirdly, it is important to describe self-consistently the
pair potential, which is the key quantity describing the
pair correlation. To achieve this, however, the continuum
quasiparticle states, including both resonant and nonresonant
states, are to be summed up in evaluating the one-body
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densities. We adopt the Green’s function technique [13] that
provides a simple and effective way of summing. Thus,
we are able to perform in the present work the fully self-
consistent continuum Hartree-Fock-Bogoliubov calculations,
i.e., we derive self-consistently both the Hartree-Fock potential
(using the Skyrme functional) and the pair potential (using a
density-dependent contact interaction as the effective pairing
force). The theoretical framework of the present analysis
shares many common aspects with those in Refs. [21–24],
but we utilize the self-consistent pair potential as well as
the Hartree-Fock mean field. Compared with the continuum
Skyrme-HFB calculations formulated in Refs. [8,16], we
utilize the scattering wave functions to construct the Green’s
function. A similar continuum HFB calculation with Green’s
function technique has been performed in Ref. [25] but with
DF3 density functional of finite Fermi system theory and
contact gradient pairing force.

We will perform numerical analysis for the N = 86 isotones
in the Mo-Sn region. The Skyrme-HFB theory with the
parameter set SLy4 suggests the presence of weakly bound
neutron single-particle orbits above the N = 82 shell gap in
neutron rich nuclei with N >∼ 84 and Z <∼ 50. In the N = 86
isotones, particularly, the 3p1/2 and 3p3/2 orbits emerge
close to the zero energy with the Hartree-Fock single-particle
energies ranging from ε ∼ −0.5 MeV to unbound resonances
around ε ∼ 0.7 MeV. Hence it provides us with a good testing
ground to study the role of weakly bound low-l orbits in the
pair correlation.

In the numerical analysis, we shall pay special attentions to
the pair density (called also the pairing tensor or the abnormal
density in the literature) and the related quantities. The pair
density is one of the most relevant quantities to the pair

correlation since it shows up in the definitions of both the
self-consistent pair potential and the pair correlation energy.
Using this quantity we will show that the l = 1 weakly bound
or unbound orbits keep a finite and sizable contribution to the
pair correlation even when they form very broad quasiparticle
resonances, and when they are located above the potential
barrier. The pairing gap associated with the unbound quasipar-
ticle states are also found to stay finite. This result is different
from those in Refs. [21–24], which suggest the decoupling of
the l = 0, 1 weakly bound and unbound orbits from the pair
correlation. We shall discuss the origin of the difference.

Finally, we remark that the present analysis is related to
Ref. [18], where, however, the Hartree-Fock potential is
replaced by a simple Woods-Saxon potential although the
deformation effect is taken into account. In the present work,
we do not discuss the deformation effect for simplicity, but
instead we investigate in detail the roles of weakly bound and
unbound orbits especially with the low angular momentum
by using the fully self-consistent continuum Hartree-Fock-
Bogoliubov calculations assuming the spherical symmetry.

In Sec. II, we describe the formulation of the continuum
Skyrme-HFB theory using the Green’s function technique.
After presenting the results including the numerical details
and the related discussions in Sec. III, we draw conclusions in
Sec. IV.

II. FORMALISM

A. Hartree-Fock-Bogoliubov equation with Skyrme interaction

In the Hartree-Fock-Bogoliubov (HFB) theory, the pair-
correlated nuclear system is described in terms of the indepen-
dent quasiparticles. The HFB equation for the quasiparticle
wave function φi(rσ ) in the coordinate space is

∫
d r ′

∑

σ ′

(
h(rσ, r ′σ ′) − λδ(r − r ′)δσσ ′ h̃(rσ, r ′σ ′)

h̃∗(rσ̃ , r ′σ̃ ′) −h∗(rσ̃ , r ′σ̃ ′) + λδ(r − r ′)δσσ ′

)
φi(r ′σ ′) = Eiφi(rσ ), (1)

where Ei is the quasiparticle energy, and λ is the chemical
potential or the Fermi energy. The Hartree-Fock Hamiltonian
h and the pair Hamiltonian h̃ can be obtained by the variation
of the total energy functional with respect to the particle
density matrix ρ(rσ, r ′σ ′) and pair density matrix ρ̃(rσ, r ′σ ′),
respectively. The two density matrices can be combined in a
generalized density matrix R as

R(rσ, r ′σ ′)

≡
(

ρ(rσ, r ′σ ′) ρ̃(rσ, r ′σ ′)
ρ̃∗(rσ̃ , r ′σ̃ ′) δ(r − r ′)δσσ ′ − ρ∗(rσ̃ , r ′σ̃ ′)

)
, (2)

where the particle density matrix ρ(rσ, r ′σ ′) and pair density
matrix ρ̃(rσ, r ′σ ′) are just the “11” and “12” components of
R, respectively.

The energy density functional of the Skyrme interaction
is constructed with the local densities, such as the particle
density ρ(r), the kinetic-energy density τ (r), and the spin-orbit

density J(r), etc., defined with the particle density matrix
ρ(rσ, r ′σ ′) [31,32]. We adopt a density dependent δ interaction
(DDDI) for the p-p channel:

vpair(r, r ′) = 1
2

(1 − Pσ )V0

[
1 − η

(
ρ(r)
ρ0

)α]
δ(r − r ′),

(3)

which presents similar properties as the pairing interaction
with finite range [33]. Then the pair Hamiltonian h̃ is reduced
to the local pair potential

*(r) = 1
2
V0

[
1 − η

(
ρ(r)
ρ0

)α]
ρ̃(r), (4)
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where the local pair density ρ̃(r) is defined with the pair density
matrix ρ̃(rσ, rσ ) [12].

For the spherical symmetry, the generalized density matrix
R can be expanded on the spinor spherical harmonics as

R(rσ, r ′σ ′) =
∑

ljm

Yljm(r̂σ )Rlj (r, r ′)Y ∗
ljm(r̂′σ ′). (5)

Using the 11 and 12 components of Rlj , one can write the
radial local densities as

ρ(r) = 1
4π

∑

lj

(2j + 1)R11
lj (r, r), (6a)

τ (r) = 1
4π

∑

lj

(2j + 1)

×
[−→

d

dr
R11

lj (r, r ′)
←−
d

dr ′ + l(l + 1)
R11

lj (r, r ′)

rr ′

]

r=r ′

,

(6b)

J (r) = 1
4πr

∑

lj

(2j + 1)
[
j (j + 1) − l(l + 1) − 3

4

]
R11

lj (r, r),

ρ̃(r) = 1
4π

∑

lj

(2j + 1)R12
lj (r, r), (6c)

where
←−
d

dr ′ denotes the derivative operator with respect to r ′

acting from right to left.
The quasiparticle wave function is represented as

φi(rσ ) = 1
r
φlj (r)Yljm(r̂σ ), where φlj (r) =

(
ϕ1,lj (r)
ϕ2,lj (r)

)
,

(7)

which obeys the radial HFB equation

⎛

⎜⎝
− d

dr

h̄2

2m∗
d

dr
+ Ulj (r) − λ *(r)

*(r)
d

dr

h̄2

2m∗
d

dr
− Ulj (r) + λ

⎞

⎟⎠ φlj (r, E) = Eφlj (r, E). (8)

The explicit expressions of the effective mass m∗
q and the

Hartree-Fock potential Ulj (r) can be found in Refs. [12,31],
and they are constructed by the radial local densities (6) and
their derivatives.

B. HFB Green’s function and densities with correct
asymptotic behavior

In the conventional Skyrme HFB theory, one solves the
radial HFB equation (8) with the box boundary condition
φlj (r, E) = 0 at the edge of the box r = R (R being the box
size) to obtain the discretized eigensolutions for the single-
quasiparticle energy and the corresponding wave functions.
Then the generalized density matrix R can be constructed
by a sum over discretized quasiparticle states. Although
the box boundary condition is appropriate for the deeply
bound states, it is not suitable for the weakly bound and
the continuum states unless a large enough box size is
taken.

Here the Green’s function method is used to impose
the correct asymptotic behaviors on the wave functions
especially for the continuum states, and to calculate the
densities.

The HFB Green’s function G0,lj (r, r ′, E) can be constructed
with solutions of the radial HFB equation (8). Suppose
φ

(rs)
lj (r, E) and φ

(+s)
lj (r, E) (s = 1, 2) are independent solu-

tions of the HFB equation (8) that satisfy the boundary
conditions at the origin and at the edge of the box, r =

R, respectively, then the HFB Green’s function is given
by [13,34]

G0,lj (r, r ′, E) =
∑

s,s ′=1,2

css ′

lj (E)
[
θ (r−r ′)φ(+s)

lj (r, E)φ(rs ′)T
lj (r ′, E)

+ θ (r ′ − r)φ(rs ′)
lj (r, E)φ(+s)T

lj (r ′, E)
]
. (9)

The coefficients css ′

lj (E) are expressed in terms of the Wron-
skians as

(
c11
lj c12

lj

c21
lj c22

lj

)

=
(

wlj (r1,+1) wlj (r1,+2)
wlj (r2,+1) wlj (r2,+2)

)−1

(10)

with

wlj (rs,+s ′) = h̄2

2m

[
ϕ

(rs)
1,lj (r)

d

dr
ϕ

(+s ′)
1,lj (r)−ϕ

(+s ′)
1,lj (r)

d

dr
ϕ

(rs)
1,lj (r)

−ϕ
(rs)
2,lj (r)

d

dr
ϕ

(+s ′)
2,lj (r) + ϕ

(+s ′)
2,lj (r)

d

dr
ϕ

(rs)
2,lj (r)

]
.

(11)

To impose the correct asymptotic behavior on the wave
function for the continuum states, we adopt the boundary
condition as follows:

{
φ

(rs)
lj (r, E) : regular at the origin r = 0

φ
(+s)
lj (r, E) : outgoing wave at r → ∞

, (12)
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Explicitly, the solutions φ
(+s)
lj (r, E) at r > R satisfy

φ
(+1)
lj (r, E) →

(
eik+(E)r

0

)
, φ

(+2)
lj (r, E) →

(
0

eik−(E)r

)
. (13)

Here k±(E) =
√

2m(λ ± E)/h̄ and their branch cuts are
chosen so that Imk± > 0 is satisfied.

The generalized density matrix can be obtained by the
contour integral of the Green’s function on the complex
quasiparticle energy plane, which in the spherical case can
be written as [13,34]

Rlj (r, r ′) = 1
2π i

∮

CE

dE
G0,lj (r, r ′, E)

rr ′ . (14)

The contour CE should be chosen to enclose the negative
energy part of the quasiparticle spectra, as shown in Fig. 1, so
that all the quasiparticle states inside the contour are summed
up. Here the discrete quasiparticle states are denoted by crosses
above the Fermi energy λ. Below the Fermi energy, the
continuum quasiparticle states are denoted by the solid stripe.
As a result, the radial local densities (6) can be calculated
by the contour integral of the radial Green’s function. In this
way, we realize a fully self-consistent continuum Skyrme HFB
calculations.

C. Numerical details

For the Skyrme interaction, we choose the parameter set
SLy4 [35], and for the pairing interaction the DDDI parameters
in Eq. (4) are adopted as V0 = −458.4 MeV fm−3, η = 0.71,
α = 0.59, and ρ0 = 0.08 fm−3 [36–38]. They reproduce the
experimental neutron pairing gap along the Sn isotopic chain.
We remark also that the parameter V0 is chosen in such a
way that the DDDI reproduces the 1S scattering length a =
−18.5 fm of the bare nuclear force in the low density limit
ρ(r) → 0, i.e., in the free space outside the nucleus. Because
of this constraint and the density dependence, the pairing
interaction strength is large around the surface, and even
increases in the exterior. The truncation of the quasiparticle
states is up to the angular momentum l = 12 and j = 25/2
and to the maximal quasiparticle energy Ecut = 60 MeV.

For the contour integration of the Green’s function, the
path CE is chosen to be a rectangle as shown in Fig. 1 with
the height γ = 1 MeV and the length Ecut = 60 MeV, which
symmetrically encloses the real negative quasiparticle energy
axis. For the contour integration we adopt an energy step
*E = 0.01 MeV on the contour path. We have checked that
for the choice of these contour path parameters, the precision
for ρ(r) and ρ̃(r) thus obtained are up to 10−10 fm−3 and
10−9 fm−3, respectively. We choose the box size R = 20 fm,
and the mesh size *r = 0.2 fm. We have also checked that
dependence of the results on the box size is very small thanks
to the boundary condition (13) with proper asymptotic form.

III. RESULTS AND DISCUSSION

In this section, taking the isotonic chain N = 86 as an
example, we will discuss in detail how characters of the

ImE

ReE

Ecut

continuum discrete
EC

FIG. 1. (Color online) Contour path CE to perform the integration
of the Green’s function on the complex quasiparticle energy plane.
The path is chosen to be a rectangle with the height γ and the
length Ecut. The crosses denote the discrete quasiparticle states. The
continuum states are denoted by the solid stripe below the Fermi
energy λ.

weakly bound and unbound quasiparticle states of neutrons
vary as the neutron Fermi energy approaches zero, and how
they contribute to the pair correlation.

A. HFB ground states and the quasiparticle spectra

Some properties of the HFB ground state for 136Sn, 134Cd,
132Pd, 130Ru, and 128Mo are listed in the first four rows in
Table I. The neutron Fermi energy (the first row) monotonically
increases from −2.39 MeV in 136Sn to −0.42 MeV in 128Mo
as the proton number Z decreases. This is because the neutron
Hartree-Fock potential becomes more shallow as Z decreases,
and we could not find a self-bound HFB solution (with λ < 0)
in 126Zr and lighter isotones.

Table I also shows the total neutron pair correlation energy

Epair = 1
2

∫
d r*(r)ρ̃(r), (15)

and the average pairing gap

*uv =
∫

d r*(r)ρ̃(r)∫
d rρ̃(r)

. (16)

The quantity in the denominator is the total neutron “pair
number”

Ñ =
∫

ρ̃(r)d r, (17)

which represents the amount of the pair condensate. In the
following, we will present the discussion about the absolute
value of pair density ρ̃ and the corresponding Ñ . It is noted
that the variation of the average pairing gap and the total pair
correlation energy along the isotones is less than 10% from
136Sn to the last bound nucleus 128Mo.

It is useful to investigate properties of individual quasipar-
ticle states which are the elementary mode of single-particle
motion in the HFB theory and the building blocks of the pair
density. It is noted that the spectrum of the quasiparticles, i.e.,
the eigenstates of the HFB equation, includes both the discrete
(0 < E < |λ|) and continuum (E > |λ|) quasiparticle states.
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TABLE I. Neutron threshold energy |λ|, total average pairing
gap *tot

uv , pair number Ñ tot, and pair correlation energy Etot
pair in the

N = 86 isotones are listed in the first four rows. The following rows
list properties of the individual low-lying quasiparticle states shown
in Fig. 2: the peak energy Eqp and the width / extracted from the
pair number density ñlj (E), the Hartree-Fock single-particle energy
ε corresponding to the quasiparticle state, the pair number Ñ ′

nlj , the
pair correlation energy E′

pair,nlj , and the effective pairing gap *′
uv,nlj

evaluated for the quasiparticle state lj within the energy interval
E = 0 ∼ 4 MeV. The unit of the energy is MeV, except for the width
/ shown in keV.

136Sn 134Cd 132Pd 130Ru 128Mo

|λ| 2.390 1.884 1.383 0.894 0.421
*tot

uv 0.736 0.721 0.707 0.694 0.678
Ñ tot 16.875 17.083 17.458 18.111 19.245
Etot

pair −6.212 −6.162 −6.173 −6.280 −6.527

ε −2.302 −1.799 −1.297 −0.801 −0.309
Eqp 0.760 0.749 0.740 0.734 0.733
/ < 0.1 0.1 < 0.1 2.5 7.3

2f7/2 *′
uv,nlj 0.755 0.745 0.737 0.731 0.727

Ñ ′
nlj 3.951 3.954 3.959 3.966 3.973

E′
pair,nlj −1.492 −1.473 −1.458 −1.449 −1.445

ε −0.480 −0.235 −0.010 0.190 0.362
Eqp 1.965 1.685 1.365 1.081 0.803
/ < 0.1 < 0.1 95.0 238.8 396.4

3p3/2 *′
uv,nlj 0.591 0.579 0.568 0.554 0.529

Ñ ′
nlj 0.528 0.591 0.679 0.813 1.040

E′
pair,nlj −0.156 −0.171 −0.193 −0.225 −0.275

ε 0.066 0.257 0.423 0.563 0.678
Eqp 2.405 2.089 1.760 1.422 1.071
/ 122.3 264.7 427.4 612.2 802.0

3p1/2 *′
uv,nlj 0.570 0.553 0.540 0.522 0.501

Ñ ′
nlj 0.179 0.199 0.226 0.268 0.339

E′
pair,nlj −0.051 −0.055 −0.061 −0.070 −0.085

ε 0.449 0.862 1.237 1.559 1.816
Eqp 2.919 2.820 2.694 2.540 2.364
/ 21.7 50.6 110.1 223.8 431.9

2f5/2 *′
uv,nlj 0.736 0.721 0.708 0.696 0.685

Ñ ′
nlj 0.690 0.682 0.684 0.701 0.736

E′
pair,nlj −0.254 −0.246 −0.242 −0.244 −0.252

ε 0.566 1.215 1.869 2.522 3.163
Eqp 3.051 3.186 3.334 3.492 3.661
/ 0.3 0.8 2.2 7.0 24.2

1h9/2 *′
uv,nlj 0.766 0.756 0.751 0.748 0.747

Ñ ′
nlj 1.214 1.145 1.079 1.016 0.948

E′
pair,nlj −0.465 −0.433 −0.405 −0.380 −0.354

Accordingly, the pair density can be expressed as a sum of
contributions from individual quasiparticle states as

ρ̃(r) =
∑

nlj,Enlj <|λ|
ρ̃nlj (r) +

∑

lj

∫ Ecut

|λ|
ρ̃lj (r, E)dE, (18)

where the first term in the right-hand side is the sum over the
discrete states, and the second term represents the integral of

the contribution to the pair density ρ̃(r) from the continuum
quasiparticle state with quantum number lj at energy E. If
we include the discrete quasiparticle states in the definition of
ρ̃lj (r, E), the above equation can be expressed as

ρ̃(r) =
∑

lj

ρ̃lj (r), where ρ̃lj (r) =
∫ Ecut

0
ρ̃lj (r, E)dE,

(19)

and ρ̃lj (r, E) can be calculated as

ρ̃lj (r, E) =
(

2j + 1
4πr2

)
1
π

ImG(12)
0,lj (r, r,−E − iϵ). (20)

We can also calculate contributions from the state with
quantum number lj at energy E to the pair number Ñ as

ñlj (E) =
∫

4πr2ρ̃lj (r, E)dr, (21)

which satisfies

Ñ =
∑

lj

∫ Ecut

0
ñlj (E)dE. (22)

We call the quantity ñlj (E) the “pair number density” in
the following. We can also calculate the “occupation number
density” nlj (E) =

∫
4πr2ρlj (r, E)dr , which is discussed in

Refs. [16,21–25]. In the following, we will investigate the
pair number density ñlj (E) rather than the occupation number
density nlj (E) since we found that the pair number density
ñlj (E) represents more clearly the structure of continuum
quasiparticle states relevant to the pair correlation.

With the smoothing parameter ϵ in Eq. (20) the δ function
(no width) originating from a discrete quasiparticle state is
simulated by a Lorentzian function with the full-width at
half-maximum (FWHM) of 2ϵ. In the following calculation,
we take ϵ = 5 keV to discuss the structure of pair number
density. Subtracting the smoothing width 2ϵ = 10 keV from
the FWHM of the peak, we obtain the physical width / of the
peak.

Figure 2 shows the pair number densities ñlj (E) for neutron
quasiparticle states in a low-lying energy interval E = 0 ∼
4 MeV in the N = 86 isotones. A peak structure below
the threshold energy E = |λ| (the dashed vertical line) is
a discrete quasiparticle state (simulated by the Lorentzian
function), and a peak above the dashed line may be identified
as a quasiparticle resonance. The width / of the peak as
well as the peak energy Eqp are tabulated in Table I. In the
same table, we also show the corresponding Hartree-Fock
single-particle energy ε, which is the eigensolution of the
Hartree-Fock single-particle Hamiltonian h obtained with
the box boundary condition. An eigenstate with ε < 0 is
discrete (bound) single-particle orbit, and ε > 0 is discretized
continuum single-particle orbit whose energy gives an estimate
for the Hartree-Fock single-particle resonance energy.

In 136Sn, the quasiparticle states corresponding to weakly
bound Hartree-Fock single-particle states, 2f7/2 and 3p3/2,
are discrete states with no width (less than 0.1 keV in the
actual numerical calculation) as they are located below the
threshold energy |λ|. The Hartree-Fock single-particle state
3p1/2 is already in the continuum (ε ∼ 70 keV), and forms a
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FIG. 2. (Color online) Pair number densities ñlj (E) of neutron
quasiparticle states with different lj around the threshold energy in
the N = 86 isotones, obtained with the self-consistent continuum
Skyrme HFB theory using Green’s function method. The thick dashed
line denotes the threshold energy |λ| for the continuum quasiparticle
states. The density of state for f7/2 is divided by a factor of 25.

quasiparticle resonance located just above the threshold energy
with Eqp ∼ |λ| + 15 keV with a large width / = 122 keV. On
the contrary, the peaks for higher angular momentum states,
e.g., 2f5/2 and 1h9/2, have finite but smaller widths, forming
narrow quasiparticle resonances.

As the proton number decreases, the neutron potential
becomes shallower, and both the Fermi energy and the single-
particle energies are raised up. The width grows larger in 134Cd
than in 136Sn for all the quasiparticle resonances above the
threshold, although the weakly bound single-particle states

2f7/2 and 3p3/2 remain the discrete states in the quasiparticle
spectrum.

When the Fermi energy is raised up further in 132Pd, the
3p3/2 quasiparticle state becomes a resonance located just
around the threshold energy, with a large width 95 keV. Since
the corresponding Hartree-Fock state is still bound (although
the binding energy is very small, ε ∼ −10 keV), it is the pair
correlation that makes the corresponding quasiparticle state
unbound with the finite width.

In 130Ru, the single-particle energies are raised further. All
the single-particle orbits under discussion except 2f7/2 become
unbound. Correspondingly the widths of the quasiparticle
resonances 3p3/2, 3p1/2, 2f5/2, and 1h9/2 grow also.

When we come to the last bound nucleus 128Mo in this
isotonic chain, all the quasiparticle states lie in the continuum.
It is noticed that both the 3p3/2 and 3p1/2 quasiparticle states
become very broad resonances whose width is comparable
with the resonance energy Eqp − |λ| measured from the
threshold. The quasiparticle state 2f7/2 is now a quasiparticle
resonance embedded in the continuum although the Hartree-
Fock single-particle state 2f7/2 is still a bound orbit. The
width comes from the continuum coupling caused by the pair
correlation, as the 3p3/2 state in 132Pd. The continuum coupling
effect is much larger for the 3p3/2 state than 2f7/2, as is seen
in the considerably different values of the width.

B. Pairing effects on the resonance width

The large widths of the 3p1/2 and 3p3/2 quasiparticle
resonances have two origins. One is the barrier penetration
of the Hartree-Fock plus centrifugal potential, which is low
for the states with low angular momentum (the barrier
height of the p1/2 and p3/2 states in 128Mo is 0.351 and
0.344 MeV, respectively). This is effective even without the
pair correlation. The other is the presence of the pair potential,
because of which even a bound single-particle orbit can couple
with continuum states, then forms a quasiparticle resonance.
The latter effect may be seen by examining the pair number
density ñlj (E) under a variation of the strength of the effective
pairing interaction.

Table II shows the quasiparticle resonance widths in 128Mo
obtained with different pairing interaction parameter η =
0.84, 0.71, and 0.62 in Eq. (3). It is seen that for the changes of
the average pairing gap *uv = 0.41 ∼ 0.68 ∼ 1.08 MeV, the
variation of the widths of the 3p1/2 and 3p3/2 quasiparticle
resonances are / = 0.73 ∼ 0.80 ∼ 0.94 MeV and 0.34 ∼
0.40 ∼ 0.49 MeV, respectively. We deduce that the pairing
effect on the widths are approximately ∼ 100 keV for 3p1/2,
and a slightly smaller for 3p3/2. A comparably large pairing
effect is also seen in the width of 2f5/2 quasiparticle resonance
where the corresponding Hartree-Fock single-particle state
is a broad resonance already without the pair correlation.
(On the contrary, the pairing effect is not large for the other
quasiparticle resonances arising from the hole orbits and those
with narrow resonances.) The pair correlation increases signifi-
cantly the width of the quasiparticle resonances corresponding
to weakly bound orbits with low angular momentum or to the
Hartree-Fock single-particle resonances close to the barrier
top. Since the wave functions of these quasiparticle resonances
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TABLE II. Dependence of the ground-state pair correlation
and the quasiparticle properties in 128Mo on the pairing interaction
strength. To control the pairing interaction strength, we vary the
parameter η of DDDI in Eq. (3) as η = 0.84, 0.71, 0.62, 0.56. We
list here the threshold energy |λ|, the total average pairing gap *uv ,
and the total pair correlation energy Epair, the peak energy Eqp,
and the width / of the lowest two quasiparticle resonances for
p3/2, p1/2, f5/2, and f7/2. The unit of energy is MeV, except for the
width / shown in keV.

η 0.84 0.71 0.62 0.56

|λ| 0.363 0.421 0.572 0.778
*tot

uv 0.414 0.678 1.077 1.541
Etot

pair −2.860 −6.527 −13.902 −24.800

ε −0.330 −0.309 −0.292 −0.283
2f7/2 Eqp 0.428 0.733 1.146 1.591

/ 4.0 7.3 13.9 24.6

ε −25.566 −25.571 −25.562 −25.534
1f7/2 Eqp 25.204 25.155 25.013 24.812

/ 0.4 0.4 0.1 1.6

ε 0.355 0.362 0.369 0.373
3p3/2 Eqp 0.670 0.803 1.049 1.346

/ 337.7 396.4 492.4 612.6

ε −20.175 −20.151 −20.114 −20.078
2p3/2 Eqp 19.816 19.742 19.579 19.379

/ 0.9 3.1 9.1 19.9

ε 0.673 0.678 0.682 0.685
3p1/2 Eqp 0.962 1.070 1.290 1.569

/ 727.4 802.0 936.2 1127.7

ε −18.553 −18.528 −18.494 −18.463
2p1/2 Eqp 18.194 18.119 17.960 17.768

/ 2.2 5.6 13.5 25.4

ε 1.817 1.816 1.814 1.811
2f5/2 Eqp 2.260 2.365 2.594 2.899

/ 392.9 431.9 514.4 660.0

ε −20.970 −21.007 −21.040 −21.048
1f5/2 Eqp 20.609 20.595 20.498 20.338

/ 0.2 0.5 2.5 7.4

have significant amplitude in the barrier region, the influence of
the pair potential on the continuum coupling can be effective.

C. Contribution of continuum quasiparticle states
to the pair correlation

Let us now investigate how the quasiparticle resonances,
shown in Fig. 2, contribute to the neutron pair correlation.

For this purpose, we examine their contribution to the
neutron pair density in the low-lying energy interval E = 0 ∼
4 MeV. We denote ρ̃ ′

nlj (r) for the partial contribution from the
low-lying quasiparticle state, and evaluate it by performing the
integral in Eq. (19) with Ecut = 4 MeV for the quasiparticle
resonances 2f7/2, 3p3/2, 3p1/2, etc. The quantity weighted
with the volume element, 4πr2ρ̃ ′

nlj (r), is shown in Fig. 3 for
the N = 86 isotones.

FIG. 3. (Color online) Neutron pair density 4πr2ρ̃ ′
nlj (r) con-

tributed by the low-lying quasiparticle states shown in Fig. 2 for
the N = 86 isotones,where ρ̃ ′

nlj (r) =
∫ 4 MeV

0 dEρ̃lj (r, E).The inserts
present the same density distribution in a log scale.

As the nucleus becomes more and more weakly bound
from 136Sn to 128Mo, a significant variation of the pair density
ρ̃ ′

nlj (r) is seen for the 3p3/2 and 3p1/2 states: the amplitude
of ρ̃ ′

nlj (r) increases dramatically at the positions far outside
the surface, r ≈ 7–15 fm. For the 3p1/2 state, the increases at
r = 8 and 10 fm are 80% and 200%, respectively, while the
increase inside, e.g., at r = 2 fm, is only ∼ 20%. The other
quasiparticle states 2f7/2, 2f5/2, and 1h9/2 exhibit a similar
trend of extending outside but to a much weaker extent.

Evaluating the volume integral of ρ̃ ′
nlj (r), we list in

Table I the quantity Ñ ′
nlj =

∫
4πr2ρ̃ ′

nlj (r)dr , which represents
a contribution to the pair number Ñ from the low-lying
quasiparticle states. It is clear that the pair number Ñ ′

nlj of
the 3p3/2 and 3p1/2 states in the most weakly bound 128Mo
is twice as big as those in 136Sn, as a result of the obvious
increase of ρ̃ ′

nlj (r) at the positions r ≈ 7–15 fm.
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We show also in Table I a partial contribution

E′
pair,nlj = 1

2

∫
4πr2dr*(r)ρ̃ ′

nlj (r) (23)

to the pair correlation energy from the low-lying quasiparticle
state. It can be seen that, moving from 136Sn to 128Mo, the
contributions of the 3p1/2 and 3p3/2 states do increase up to
around 70%. It is clear that this increase of the pair correlation
energy is due to not only the increase in ρ̃ ′

nlj (r) but also the
large spatial overlap between the pair density ρ̃ ′

nlj (r) and the
pair potential *(r). In Fig. 4 we show the neutron pair potential
*(r) and the product of the pair potential and the pair density
4πr2*(r)ρ̃ ′

nlj (r), the integrand of the pair correlation energy,
Eq. (23). Since the radial profile of the pair potential *(r) is
not only surface-peaked but also extends up to r ∼ 10 fm, the
two quantities have significant overlap, and hence the product
4πr2*(r)ρ̃ ′

nlj (r) exhibits a significant increase at r ≈ 7
− 10 fm. This brings about a large increase of the pair
correlation energy.

We note here that the energies of the Hartree-Fock single-
particle orbits corresponding to the 3p3/2 and 3p1/2 states
move upward around and beyond the threshold: from ε =
−0.48 MeV (weakly bound) to ≈ 0.36 MeV (unbound with
the single-particle energy comparable with the barrier height
≈ 0.34 MeV) in the 3p3/2 case, and from ≈ 0.07 MeV (around
the threshold) to ≈ 0.68 MeV (even above the barrier height
≈ 0.35 MeV) in the 3p1/2 case. In the least bound case (128Mo),
the 3p3/2 and 3p1/2 quasiparticle resonances have the widths
/ = 0.396 and 0.802 MeV, respectively, which are comparable
with the resonance energy. Nevertheless, both the pair number
Ñ ′

nlj and the pair correlation energy E′
pair,lj continue to increase

as is seen above. This indicates that the weakly bound and
unbound states can feel the pair potential and contribute to the
pair correlation in sizable way.

D. Effective pairing gap of continuum quasiparticle states

In order to make a quantitative estimate for the influence
of the pair potential on the low-lying quasiparticle states, we
evaluate the state-dependent effective pairing gap which can
be defined by

*′
uv,nlj =

∫
4πr2*(r)ρ̃ ′

nlj (r)dr
∫

4πr2ρ̃ ′
nlj (r)dr

= −2E′
pair,nlj /Ñ

′
nlj (24)

using the pair density ρ̃ ′
nlj (r) for the specific quasiparticle state.

We list it in Table I.
In the nucleus 136Sn, the effective pairing gaps of the 3p3/2

and 3p1/2 states are *′
uv,nlj = 0.591 MeV and 0.570 MeV,

respectively, which are about 77 ∼ 80 % of the total-average
pairing gap *tot

uv = 0.736 MeV. The effective pairing gaps still
keep finite values of the same order in the last bound nucleus
128Mo, where the 3p1/2 and 3p3/2 Hartree-Fock orbits are
both unbound. For the 3p3/2 state, the effective pairing gap
is *′

uv,nlj = 0.529 MeV. It stays at the level of 78% of the
average gap *tot

uv = 0.678 MeV. Even for the 3p1/2 resonance
with large width, the effective pairing gap 0.501 MeV keeps
74% of the total. The variation of the effective pairing gaps

of the 3p states from 136Sn to 128Mo is also small, i.e., they
decrease only slightly by ∼ 10%.

The facts that the effective pairing gaps of the 3p3/2 and
3p1/2 states are slightly smaller than the total average value,
and that they decrease as the orbits become less bound and
become unbound in the continuum, can be ascribed to the
decoupling effect [21–24], which is expected to originate from
the possible small overlap between the single-particle wave
function and the pair potential. In Ref. [23], the effective
pairing gap in the weakly bound p orbit is suggested to be
less than 50% of the average, and possibly less than 1/3
for an unbound p orbit. Compared with these numbers, the
decoupling effect observed here (≈ 20–25 %) is much smaller.
Namely, we can see that these quasiparticle states persist to
feel the pair potential and contribute to the pair correlation
even if they become unbound and have large width.

The difference between the conclusions of our analysis and
those of Ref. [23] can be explained as follows. In our analysis,
the self-consistent pair potential not only peaks around the
surface (r ≈ 5–7 fm), but also extends outside (up to 10 fm
or more) as shown in Fig. 4(a), whereas the pair potential in
Refs. [21–24] has a Woods-Saxon shape whose main part is
concentrated inside the nucleus. Meanwhile, the pair density
4πr2ρ̃ ′

nlj (r) also peaks around the surface and extends outside.
Let us take, for instance, the 3p1/2 resonance state in 128Mo
whose Hartree-Fock single-particle energy is around 0.7 MeV.
Considering the wave function of the quasiparticle state at the
peak energy Eqp, its upper component ϕ1(r, Eqp) has large
amplitude around the barrier as the state is located above the
barrier height (0.35 MeV), and it oscillates in the asymptotic
region. On the other hand, the lower component ϕ2(r, Eqp)
exhibits an exponentially decaying asymptotics ∝ exp(−κr)
with κ =

√
2m(|λ| + Eqp)/h̄ [15]. Since the contribution of

FIG. 4. (Color online) (a) Neutron pair potential *(r) in the N =
86 isotones, and (b) integrand of the corresponding pair correlation
energy, 4πr2*(r)ρ̃ ′

nlj (r), for the 3p1/2 quasiparticle state, where
the pair density ρ̃ ′

nlj (r) is the contribution from the 3p1/2 resonant
quasiparticle state which is shown in Fig. 3.
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this state to the pair density ρ̃ ′
nlj (r) is given by the product of

ϕ1(r, Eqp) and ϕ2(r, Eqp), the pair density is confined around
the nucleus (r <∼ 15 fm in the present numerical examples)
and the largest amplitude of 4πr2ρ̃ ′

nlj (r) shows up around the
surface even though the quasiparticle state is located far above
the threshold and has a large width. Consequently, such states
have sizable overlap with the pair potential and thus keep the
finite effective pairing gap even when the nucleus becomes
more weakly bound.

Conversely we may argue a condition for the occurrence
of the strong decoupling in a semiquantitative way. Since
the spatial extension of the pair density is characterized by
a size constant rρ̃ ≡ 1/κ = h̄/

√
2m(|λ| + Eqp), the strong

decoupling can be expected when rρ̃ ≫ Rsurf., i.e., only when
both the Fermi energy |λ| and the quasiparticle energy Eqp
are sufficiently small. Here the energy Eqp of a discrete or
resonance quasiparticle state has a lower bound Eqp >∼ *′

nlj

given by the effective pairing gap. For the p states in 128Mo,
we find Eqp ∼ 0.7 MeV, and |λ| > 0.4 MeV, therefore, rρ̃ ∼
4 fm, which is not much larger than the nuclear radius Rsurf ∼ 5
fm. This explains why the decoupling is weak here.

E. The volume pairing

The relation between the present results and the decoupling
scenario in Refs. [21–24] may be clarified by examining
a case where the pairing potential has a radial dependence
similar to that adopted in those references. We have repeated
the same continuum HFB calculation except that we now
employ the so-called volume pairing, in which the DDDI
parameters in Eq. (4) are chosen so that the effective pairing
force has no density dependence (η = 0), and the strength V0 =
−205.0 MeV fm−3 reproduces the overall value of the total
average pairing gap *tot

uv listed in Table I. The results are shown
in Fig. 5 and Table III.

TABLE III. The same as Table I, but for the volume pairing. Here
only the ground-state properties and the properties of the 3p3/2 and
3p1/2 quasiparticle states are listed.

136Sn 134Cd 132Pd 130Ru 128Mo

|λ| 2.355 1.833 1.323 0.829 0.356
*tot

uv 0.771 0.738 0.705 0.672 0.635
Ñ tot 15.266 14.992 14.788 14.688 14.777
Etot

pair −5.884 −5.534 −5.216 −4.932 −4.694

ε −0.471 −0.216 0.009 0.204 0.367
Eqp 1.924 1.630 1.292 0.986 0.676
/ 0.1 0.1 86.9 222.9 357.9

3p3/2 *′
uv,nlj 0.558 0.523 0.486 0.442 0.392

Ñ ′
nlj 0.452 0.486 0.535 0.615 0.766

E′
pair,nlj −0.126 −0.127 −0.130 −0.136 −0.150

ε 0.073 0.271 0.437 0.573 0.682
Eqp 2.363 2.034 1.693 1.341 0.973
/ 118.9 265.5 428.1 607.3 789.1

3p1/2 *′
uv,nlj 0.528 0.487 0.451 0.415 0.370

Ñ ′
nlj 0.144 0.152 0.164 0.183 0.216

E′
pair,nlj −0.038 −0.037 −0.037 −0.038 −0.040

FIG. 5. (Color online) (a) Neutron pair potential *(r), (b) neutron
pair density 4πr2ρ̃ ′

nlj (r) for the 3p1/2 quasiparticle state, where

ρ̃ ′
nlj (r) =

∫ 4 MeV
0 dEρ̃lj (r, E), and (c) integrand of the corresponding

pair correlation energy, 4πr2*(r)ρ̃ ′
nlj (r) in the N = 86 isotones,

obtained by the self-consistent Skyrme HFB theory using Green’s
function method for the volume pairing case.

As seen in Fig. 5(a), the neutron pair potential *(r) of
the volume pairing is concentrated strongly within the region
r <∼ 8 fm, in clear contrast to the pair potential with the
significant surface enhancement shown in Fig. 4(a). On the
other hand, the neutron pair density 4πr2ρ̃ ′

nlj (r) associated
with the 3p1/2 quasiparticle state, shown in Fig. 5(b), extends
outside the nuclear surface r = 7–15 fm, and this spatial
extension grows as the drip-line is approached [in a similar
manner seen in Fig. 3(c), but to a slightly smaller extent].
Since the overlap of the two quantities, i.e., the product
4πr2*(r)ρ̃ ′

nlj (r) corresponding to the integrand of the pair
correlation energy, is then confined inside the surface region
(r <∼ 8 fm), the external part (>∼ 8 fm) of the pair density of
the 3p1/2 quasiparticle state does not contribute to the pair
correlation energy, leading to a small effective pairing gap.
Indeed the effective pairing gaps *′

uv,nlj of the 3p3/2 and
3p1/2 states decrease from 0.558 and 0.528 MeV, respectively,
in 136Sn, to 0.392 and 0.370 MeV in 128Mo by about 30%
as approaching the drip-line. The decrease is larger than
that (10–12 %) for the surface-enhanced DDDI. Taking the
most weakly bound nucleus 128Mo for instance, the effective
pairing gaps 0.392 and 0.370 MeV of the 3p quasiparti-
cle states for the volume pairing are notably smaller than
the corresponding numbers 0.529 and 0.501 MeV in the case
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of the surface-enhanced DDDI (Table I). The smaller effective
pairing gaps indicate a larger decoupling effect.

We note, however, that, the decoupling effect found in
the above analysis is not as large as what is discussed in
Refs. [21–24]. For the most weakly bound nucleus 128Mo,
the effective pairing gaps keep 62% and 58% of the total
(0.635 MeV) for the unbound 3p3/2 and 3p1/2 states, re-
spectively, still sizably larger than that suggested (< 1/3)
in Ref. [23]. Even in the volume pairing case, the unbound
3p quasiparticle states persist to feel the pair potential and
contribute to the pair correlation to some extent.

IV. CONCLUSIONS

We have investigated the neutron pair correlation in
neutron-rich nuclei with small neutron separation energies by
means of the fully self-consistent continuum Skyrme HFB
theory, in which the Green’s function method is utilized to
describe precisely the asymptotic behavior of scattering waves
for the unbound quasiparticle states in the continuum. We have
clarified how weakly bound and unbound neutron orbits con-
tribute to the pair correlation properties, especially the orbits
with the low angular momentum l = 1 which have large spatial
extensions. We have chosen the even-even N = 86 isotones in
the Sn-Mo region for numerical analysis, and investigated, in
detail, the pairing properties associated with the neutron 3p3/2
and 3p1/2 orbits, whose Hartree-Fock single-particle energies
(resonances) vary in the interval of −0.5 MeV < ε < 0.7 MeV,
covering both weakly bound and unbound cases.

We found the following features from the numerical
analysis. When the 3p quasiparticle states are embedded in
the continuum above the threshold, they immediately become
broad resonances with large widths. This is because the barrier
height of the Hartree-Fock plus centrifugal potential is low for
the p orbits (∼ 0.35 MeV in the present examples), and also
because the pair potential which remains effective around the

barrier region gives rise to additional coupling to the scattering
wave in the exterior. The numerical results show that the width
of the quasiparticle resonances of the 3p states are comparable
to the excitation energy measured from the threshold. In
spite of such a large width (/ ∼ 1 MeV), the contribution
of the broad quasiparticle resonances to the pair correlation
remains finite or can even increase. We found that the effective
pairing gaps of the broad quasiparticle resonances have a
comparable size to the total average pairing gap, indicating
that the continuum quasiparticle states persist to contribute
to the pair correlation. To be more precise, there exists some
reduction of the effective pairing gap of 20−25 % from the
total average gap. However, this reduction of the effective pair
gap is much smaller than what is discussed in Ref. [23].

Summarizing, even the broad quasiparticle p-wave reso-
nances in the continuum do contribute to the pair correlation
as long as it is located not far from the Fermi energy. This
is different from the decoupling scenario [21–24]. The reason
for the difference is that the pair correlation in the present
study is described self-consistently using the effective pairing
interaction which has enhancement outside the nuclear surface,
and in this case the pair potential is enhanced largely around
the surface and proximate exterior, keeping an overlap with
the low-l resonant quasiparticle states.
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