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ðd − 2Þ-Dimensional Edge States of Rotation Symmetry Protected Topological States
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We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two
and three dimensions (d ¼ 2, 3). We show that in both cases nontrivial topology is manifested by the
presence of the (d − 2)-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion
systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of
filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also
present. The theory is extended to strongly interacting systems through the explicit construction of
microscopic models having robust (d − 2)-dimensional edge states.

DOI: 10.1103/PhysRevLett.119.246402

Introduction.—A symmetry protected topological state
(SPT) is a gapped quantum state that cannot be continu-
ously deformed into a product state of local orbitals without
symmetry breaking [1–3]. The SPT is known to have
gapless boundary states in one lower dimension [4], i.e., the
(d − 1)-dimensional edge, such as the spin-1=2 excitations
at the end of a Haldane chain [5] or the Dirac surface states
at the surface of a topological insulator [6,7]. The gapless
states are protected by the symmetries on the (d − 1)-
dimensional edge, and when the symmetry is a spatial
symmetry, they appear only on the boundary that is
invariant under the symmetry operation [8–11].
Very recently, the possibility of having a gapped (d − 1)-

dimensional edge but a gapless (d − 2)-dimensional edge
has been discussed [12–15]. In Ref. [12], it was shown that,
in a 2D spinless single-particle (i.e., no spin-orbit coupling)
system that has anticommuting mirror planes, all four side
edges can be gapped without symmetry breaking on an
open square, but there are four modes localized at the four
corners (0D edge) protected by mirror symmetries. Here we
first extend the theory of 0D-edge states to spin-1=2
fermion systems without mirror symmetries but with
fourfold rotation symmetry and time-reversal symmetry.
We point out that the presence of 0D-edge states can be
understood as the result of a mismatch between the
locations of the centers of the Wannier states and those
of atoms. Then we generalize the theory to 3D and define a
new topological invariant by classifying the “spectral flow”
of the Wannier centers between the kz ¼ 0 and the kz ¼ π
slices in the Brillouin zone. When this invariant is non-
trivial, there are four helical edge modes on the otherwise
gapped side surfaces of the 3D system. We further show
that, when space inversion is also present, there is a Fu-
Kane-like formula [16] relating this invariant to certain
combinations of rotation and inversion eigenvalues of the

filled bands at high-symmetry crystal momenta. Finally, we
generalize the theory to strongly interacting systems, by
constructing microscopic models of boson and fermion
SPT states that have (d − 2)-dimensional edge states for
d ¼ 2, 3 using coupled wire construction. We remark that
these edge states, protected by C4 and some local symmetry
such as time reversal, are not pinned to the corners or
hinges of the system and can even appear in geometries
having smooth side surfaces.
Mismatch between the atom sites and the Wannier

centers.—Wannier functions for the filled bands can be
constructed for all 2D gapped insulators that have a zero
Chern number [17]. When symmetries are involved (time
reversal and/or spatial), the set of Wannier functions may or
may not form a representation of the symmetry group [18].
If they do, then we call these Wannier functions “sym-
metric.” If a set of symmetric Wannier functions cannot be
found for all filled bands, we know that the system cannot
be adiabatically deformed into an atomic insulator: This is
considered a generalized definition of topologically non-
trivial insulators [19,20], since atomic orbitals automati-
cally form a set of symmetric wave functions. Atomic
insulators are usually considered trivial. Nevertheless, we
realize that even they can also be somewhat nontrivial if
there is a mismatch between the Wannier centers and the
atomic positions, as shown in the left panel in Fig. 1(a). A
Wannier center (WC) can be understood as the middle of
the Wannier function (but see Ref. [21] for a rigorous
definition), and, if the Wannier functions are symmetric,
their centers are also symmetric. When the mismatch
happens, it means that, while the insulator can be deformed
into some atomic insulator, it would not be made by the
atoms forming the lattice. The presence of 0D-edge states
of the system put on an open disk is the manifestation of the
“mismatch.”
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To be specific, let us consider a square lattice model

H ¼ ð1 − cos kx − cos kyÞτ0σzs0 þ sin kxτ0σxsx

þ sin kyτ0σxsy þ Δðcos kx − cos kyÞτyσys0; ð1Þ

in which all the atomic orbitals are put on the lattice sites.
Here τi and σi (i ¼ 0; x; y; z) are Pauli matrices represent-
ing the orbital degrees of freedom, and si (i ¼ 0; x; y; z)
representing the spin. This model can be thought of as two
copies of 2D topological insulator plus a mixing term with
Δ as the coefficient; and it has time-reversal symmetry
T ¼ −isyK and a rotation symmetry C4 ¼ τze−iπsz=4. The
system put on a torus is fully gapped, because the four
terms in Eq. (1) anticommute with each other and their
coefficients do not vanish at the same time.
As shown in Ref. [21], whatever value Δ takes, the

insulator is equivalent to an atomic one, and its WCs are
located at the plaquette centers. We have explicitly con-
structed a set of symmetric Wannier functions and prove
that, protected by the time-reversal and C4 symmetries, the
Wannier centers stay invariant under any gauge trans-
formation that keeps the Wannier functions symmetric.

This model hence realizes the mismatch between the WCs
at plaquette centers and the atomic positions at sites.
Now we cut along the dotted lines in the left panel in

Fig. 1(a) and turn the 2D torus into an open square. Since
this cut preserves C4 symmetries, the states centered at the
plaquette center will be equally divided into four quarters,
so that each quarter carries one extra electron on top of
some even integer filling. Because of T, this means that a
pair (Kramers’s pair) of zero modes are located near each of
the four corners of the square. One may observe that, in the
absence of particle-hole symmetry (which is an accidental
symmetry of the model), the modes can be moved away
from zero and pushed into the bulk states, but we argue that,
even when this happens, the corners are still nontrivial in
the following sense. The total eight modes (two near each
corner) come from both the conduction and the valence
bands, each having ðNband − νÞL2 − 4 and νL2 − 4 elec-
trons, respectively, where Nband ∈ even and ν ∈ even are
the total number of bands and the filling number, respec-
tively, and L the length of the square [Fig. 1(b)]. No matter
where the Fermi energy is, a gapped ground state must have
4 mod 8 electrons on an even-by-even lattice, so that each
corner has exactly one (or minus one) extra electron on top
of the filling of the bulk. This is in sharp contrast with the
systems having trivial corner states, whose energy levels
are plotted in Fig. 1(c). In that case, the in-gap states can be
pushed into the conduction bulk, and there is no extra
charge at each corner. In Figs. 1(d) and 1(e), we plot the
charge density at μ ¼ μ1 in real space and plot the extra
electric charge within a small area near the corner as a
function of radius in the Slater-product many-body
ground state.
To see how the odd parity of the corner charge is

protected by C4, we contrast the above scenario with the
one having a nematic perturbation breaking C4 down to C2,
so that the Wannier centers are shifted to the positions
shown in the right panel in Fig. 1(a). When the system is cut
along the dotted lines, the quarter has inside it an integer
number of Kramers’ pairs, and the degeneracy at each
corner is absent.
1D helical state and Z2 Wannier center flow.—A natural

generalization of the 0D state in 2D is the 1D-edge state in
3D, where both the 3D bulk and 2D side surfaces are
insulating, as shown in Fig. 2(c). Our construction of this
state is also based on the WC picture. Assuming the 3D
system has T and C4 symmetries, we can take a C4-
invariant tetragonal cell and transform the Hamiltonian
along the z direction to momentum space. Each slice with
fixed kz can be thought of as a 2D system, wherein the
kz ¼ 0; π slices are time reversal andC4 invariant, while the
others are only C4 invariant. Consider an insulator that has
four filled bands, or four WCs for each kz slice. Because of
C4, the four WCs are related to each other by fourfold
rotations; and due to T, at kz ¼ 0 or kz ¼ π, two WCs that
form a Kramers’s pair must coincide. Therefore, at kz ¼ 0
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FIG. 1. Nontrivial 0D-edge modes of a 2D fermion. In (a), we
sketch the mismatch between the atom sites and the WCs in the
presence (left panel) and the absence (right panel) of C4, where
the atom sites are represented by the block circles and the WCs
are represented by the colored orbitals. In (b) and (c), level
counting for systems with nontrivial and with trivial 0D-edge
state is shown, respectively. In (d), the numerical calculated
density profile of the 2D model with a finite size of 50 × 50 is
plotted, where the Fermi level is set at μ1. The four bright regions
in (d) show the additional charges located at the corners. To count
the number of additional charges around a corner, we plot the
integral of the density deviation from the filling (ν ¼ 4) in (e).
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and kz ¼ π, there are only three possible configurations for
the four WC: all four at 1a, all four at 1b, and two at each
2c Wyckoff position. Wyckoff positions are points in a
lattice that are invariant under a subgroup of the lattice
space group. For a square lattice in a Wigner-Seitz unit cell,
1a and 1b are the center and the corner invariant under C4,
2c are the middles of the edges invariant under C2, and 4d
are generic points invariant under identity (the trivial
subgroup). If the configurations at kz ¼ 0 and at kz ¼ π
are different, the evolution of the WC between the two
slices forms a “Z2 flow,” a robust topological structure
revealing that the 3D insulator is not an atomic one. Out of
several different combinations of the configurations at kz ¼
0 and kz ¼ π, there are two topologically distinct Z2 flows,
where the four WCs flow from 1b to 1a and from 1b to 2c
[solid yellow and dashed green lines in Fig. 2(a)], respec-
tively. The latterZ2 flow can be shown equivalent to a weak
topological index (Ref. [21]), and we from now on focus on
the firstZ2 flow from 1b to 1a. Whether this flow is present
or not gives us a new Z2 invariant, and its edge manifes-
tation is the existence of 1D helical edge modes on the side
surface of a bulk sample. (For a more rigorous definition
and classification of theWC flow for an arbitrary number of
filled bands, see Ref. [21].)
To see this bulk-edge correspondence, we cut the bulk

along both the x and y directions, keeping the periodic
boundary condition along z. From a top-down perspective,
a corner of the sample takes the shape of the dotted lines
shown in Fig. 2(a). One can see that, at the corner, the
boundary cuts through exactly one (or three) line(s) in
the WC flow, corresponding to one helical mode along the
hinge between the two open surfaces. To make the picture
more concrete, we consider the following 3D model, which
is a simple extension of the 2D model in Eq. (1):

H ¼
�
2 −

X
i

cos ki

�
τ0σzs0 þ

X
i

sin kiτ0σxsi

þ Δðcos kx − cos kyÞτyσys0: ð2Þ

The kz ¼ 0 slice is equivalent with the 2D model in Eq. (1),
thus having four charges locating at the plaquette center.
The kz ¼ π slice is, however, a 2D atomic insulator with
four charges locating at the lattice site. The mismatch
between the WCs at kz ¼ 0 and kz ¼ π slices means that
the Z2 flow exists. To confirm the Z2 flow, we also choose
a smooth gauge for all the kz slices from kz ¼ 0 to kz ¼ π
and plot the WC flow explicitly, which indeed gives the Z2

flow, shown in Ref. [21]. The 1D helical state is also
confirmed by a numerical calculation of the band structure
of a finite tetragonal cylinder, as plotted in Fig. 2(b). For
this particular model, the helical edge states can be viewed
from another perspective. The edge between the two open
surfaces can be considered as the domain wall between
them. On each surface there is a mass gap, and the rotation
symmetry in this model enforces the two masses to be
opposite, so that at the domain wall there is a helical mode
[11] [see Fig. 2(c) for a schematic, and see Ref. [21] for
more details].
Symmetry indicators for the Z2 invariant.—To see if a

given insulator has 1D helical edge modes on the side
surface, one needs to calculate the evolution of the WCs as
a function of kz, which in turn requires finding symmetric,
smooth, and periodic Bloch wave functions for all bands at
each kz slice as is done for our model Hamiltonian. This is
practically impossible in real materials. Now we show that,
in the presence of additional inversion symmetry, this Z2

invariant can be determined by the rotation and inversion
eigenvalues at all high-symmetry momenta, simplifying the
diagnosis. We call this method a “Fu-Kane-like formula,”
likening it to the Fu-Kane formula for time-reversal
topological insulators [16], where inversion is not required
to protect the nontrivial topology but when present greatly
simplifies the calculation.
This formula is derived based on the new theory of

symmetry indicators [19,20]: Given any insulator, a full set
of eigenvalues of the space group symmetry operators for
filled bands at all high-symmetry points generates a series
of indicators. They tell us if this set is consistent with any
atomic insulator, and, if yes, the theory further gives where
the atomic orbitals are located. Our goal is to find such an
indicator that is equivalent to the Z2 invariant for the WC
flow. Following the WC flow picture, we require (i) at
kz ¼ 0 and kz ¼ π, the eigenvalues of C4, C2 ¼ C2

4 and P
are consistent with atomic insulators; (ii) there is no surface
state on the side surfaces; and (iii) comparing the two slices
at kz ¼ 0 and kz ¼ π, the numbers of atomic orbitals at 1a
and at 1b change by �4 and ∓ 4, respectively. For a
concrete example, let us consider space group P4=m,
whose indicators form a group Z2 × Z4 × Z8 [19], so that
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FIG. 2. Nontrivial 1D helical modes of a 3D insulator. In (a), we
plot the two generators of nontrivialZ2 flows from the kz ¼ 0 slice
to the kz ¼ π slice, where the lattice site (1a), the plaquette center
(1b), and the edge midpoint (2c) are represented by a black
planchet, hollow circle, and gray planchet, respectively. In (b), the
numerically calculated helical modes of our 3D model on a
tetragonal cylinder geometry are plotted. The length along the x
and y directions is 50. In (c), we sketch the domain wall between
surfaces of oppositemasses, enforced by theC4 rotation symmetry.
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the insulator according to its C4 and P eigenvalues can be
denoted by ðmnlÞ (m ¼ 0, 1, n ¼ 0, 1, 2, 3, l ¼ 0; 1;…; 7),
and an insulator with a nonzero indicator cannot be
adiabatically deformed into an atomic insulator. Using
the three criteria above, we find that the Z2 flow is
nontrivial only if ðmnlÞ ¼ ð004Þ. We have found the
explicit formulas to calculate these indicators directly from
the symmetry eigenvalues, which can be applied to all
space groups having both C4 and P. (See Ref. [21] for the
results, and find a MATLAB script therein for an automated
diagnosis for materials in these space groups.)
Extension to strongly interacting SPT.—In the above we

have established the theory of (d − 2)-dimensional edge
modes for free fermions through the WC picture. Since WC
is a single-particle object, the same picture does not apply
for strongly interacting bosons or fermions. Here we
rebuild a 3D free fermion model with robust 1D helical
edge modes using coupled wire construction [24–28], a
method that can be easily extended to strongly interacting
SPT. These SPT can either be bosonic [29] or fermionic and
are, in general, protected by spatial symmetry [30] plus
some internal symmetry [31].
Consider an arrangement of 1D wires shown in the top

down view in Fig. 3(a), each of which represents a helical
mode. Because of the fermion doubling theorem, each wire
alone cannot be physically realized in 1D, but an even
number of these wires can be realized as a 1D wire fine-
tuned to a critical point. In our model, four wires make a
physical, critical 1D wire. For concreteness, we assume that
under C4 rotation the four wires inside cyclically permute.
Then we couple the wires in the following way: The four
wires, in the top down view, which share a plaquette are
coupled diagonally, i.e., 1 coupled to 3 and 2 to 4. For a 3D
torus, these couplings (solid red lines) make the coupled
wire system an insulator. For a cylinder geometry open in
the x and y directions, however, there are “dangling helical
wires” on the side surfaces, which can again be gapped by

turning on a dimerizing coupling (dotted lines). But one
soon discovers that, as long as C4 is preserved, there are
always four unpaired wires on the side surface (represented
by green dots), which are in fact the same 1D helical edge
mode protected by C4 and T studied above.
This construction can be easily extended to strongly

interacting SPT. One simply replaces each helical wire with
a (d − 2)-dimensional edge of a (d − 1)-dimensional SPT
protected by some local symmetry. For example, each
“wire” can be a 0D spin 1=2, which is the edge of a 1D
Haldane chain protected by SO(3) symmetry. In that case,
the resultant construction in Fig. 3(a) is nothing but an
Affleck-Kennedy-Lieb-Tasaki (AKLT)-like state [32,33]
formed by S ¼ 2 spins, but, unlike previously considered
AKLT states in 2D, it has a gapped 1D edge but four 0D
gapless spin-1=2 excitations localized at the four corners in
an open square. We can also replace each wire by the edge
of a Levin-Gu state [34], protected by a Z2 local symmetry,
and then the construction in Fig. 3(a) is a 3D bosonic SPT
with 1D gapless modes at four corners. Notice that, in these
boson examples, time-reversal symmetry is not necessary.
Similar construction can be used to obtain SPT states
protected by both the local symmetries [being T, SO(3), or
Z2] and C4-rotation symmetry.
Discussion.—It is important to note that, while in

examples studied so far the (d − 2)-dimensional edge
modes sit at the corners or hinges in the disk or cylinder
geometry, it is not always the case. In the model shown in
Fig. 3(a), the edge modes are pinned to the corners by the
mirror symmetries (dotted lines), and breaking these mirror
planes in the bulk or on the surface causes the edge modes
to move away. In the example shown in Fig. 3(b), we break
the mirror symmetry of the construction on the surface, so
that the dangling wires move from the corners to some
generic points on the side. As long as C4 is present, the
(d − 2)-dimensional edge modes are stable yet not pinned to
corners or hinges in the absenceofmirror symmetries. In fact,
they still appear even if the whole side surface is smooth
without hinges at all. We also emphasize that, while these
edgemodes are protected byC4-rotation symmetry, breaking
the symmetry perturbatively in the bulk or on the boundary
does not, in general, gap out themodes, because time reversal
alone is sufficient to protect 1D helical edgemodes. The only
way of gapping the modes is to annihilate them in pairs, and
this means large C4 breaking either in the bulk or on the
boundary. Similar discussions may be extended to systems
with twofold, threefold, and sixfold rotations.
Experimentally, the four helical edge modes of a 3D

electronic insulator contribute a quantized conductance of
4e2=h that may be measured in electric transport [7]. Also,
the (d − 2)-dimensional edge modes may be detected by
local probes such as scanning tunneling microscopy, either
on a bulk sample or at the step edge of a thin film.

C. F. thanks Xi Dai, Meng Cheng, Yang Qi, and B.
Andrei Bernevig for helpful discussion. The work was

Mirror breaking

Strong coupling
Weak coupling

12

3 4

(d-2)-dimensional edge of (d-1)-dimensional SPT

(d-2)-dimensional unpaired edge

(a) (b)

FIG. 3. Coupled wire construction for a 3D SPT with robust
1D-edge modes. Each filled circle is a wire from the top down,
and each open circle including four elementary wires is a
“physical” wire that can be realized in 1D lattice models. The
breaking of mirror symmetry in (a) causes the edge modes to
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Quantitative mappings between symmetry
and topology in solids
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The study of spatial symmetries was accomplished during the last century and had greatly

improved our understanding of the properties of solids. Nowadays, the symmetry data of any

crystal can be readily extracted from standard first-principles calculation. On the other hand,

the topological data (topological invariants), the defining quantities of nontrivial topological

states, are in general considerably difficult to obtain, and this difficulty has critically slowed

down the search for topological materials. Here we provide explicit and exhaustive mappings

from symmetry data to topological data for arbitrary gapped band structure in the presence

of time-reversal symmetry and any one of the 230 space groups. The mappings are com-

pleted using the theoretical tools of layer construction and symmetry-based indicators. With

these results, finding topological invariants in any given gapped band structure reduces to a

simple search in the mapping tables provided.
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D istinct phases do not always differ from each other in their
symmetries as expected in the Ginzburg-Landau para-
digm. Two gapped phases having the same symmetry may

be distinguished by a set of global quantum numbers called
topological invariants1–8. These invariants are quantized num-
bers, whose types (integer, Boolean, and others) only depend on
the symmetry group and the dimension of the system9,10. The
invariants fully characterize topological properties that are
unchanged under arbitrary adiabatic tuning of the Hamiltonian
that preserves the relevant symmetry group. Materials having
non-zero topological invariants are loosely called topological
materials (whereas the technical term is symmetry protected
topological states11–13), a new kind of quantum matter that hosts
intriguing physical observables such as quantum anomaly on
their boundaries14–16, and are considered candidate materials for
new quantum devices17–21. Success in finding these materials
largely depends on the numerical evaluation (prediction) of
the topological invariants in a given candidate material.
However, even for electronic materials having weak electron
correlation, where the topological invariants are best understood
and expressed in terms of the wave functions of the valence
bands, these calculations still prove quite challenging. In fact,
numerically finding a new topological material has proved so
hard that a single success17,22–25 would have triggered enormous
interest26–32.

On the other hand, mathematicians and physicists have since
long developed, via the representation theory of space groups, a
complete toolkit for the study of the symmetry properties of
bands in solids33,34. Given any point in momentum space, each
energy level corresponds to an irreducible representation (irreps)
of the little group at that momentum, depending on the Blöch
wave functions at the level. Modern implementations of the
density functional theory output both the energy levels and their
Blöch wave functions for any given crystal momenta, such that
finding the irreps of all valence bands in a band structure (BS) is
now considered a solved problem that can be automated.

It has been eagerly hoped that quantitative relations exist
between the topological invariants and the irreps in the valence
bands at high-symmetry points in the Brillouin zone, i.e., the
symmetry data of valence bands. These relations, if existed, would
reduce the difficult task of finding the former to a routine cal-
culation of the latter. However, the examples are rare35–38. Fu-
Kane formula35 for topological insulators protected by time-
reversal symmetry (TI for short from now) is an exemplary one,
mapping the four topological Z2-invariants to inversion eigen-
values at eight high-symmetry points. This simple golden rule
considerably expedited the search for TI in all centrosymmetric
materials via first-principles numerics22. Nevertheless, for general
topological states in three dimensions protected by any one of the
230 space groups with and without time-reversal, or topological
crystalline insulators39 (TCIs), explicit formulae relating their
topological invariants to symmetry data have so far been missing.

Recently, a solid step along this direction is made in refs. 40–43,
where the authors systematically study the connectivity of bands
in a general gapped BS and identify the constraints on the sym-
metry data in the form of linear equations called the compatibility
equations. ref. 41 explicitly provides these relations for each space
group and observes that if a symmetry data satisfying all com-
patibility relations cannot decompose into elementary band
representations (sets of symmetry data of atomic insulators (AIs),
given in the same paper), the material must be topologically
nontrivial. ref. 40 shows that the symmetry data of any gapped BS
can be compressed into a set of up to four Zn¼2;3;4;6;8;12 numbers
called symmetry-based indicators (SIs) (see Methods section for a
brief review of SI). The set of SI is a lossless compression of
symmetry data as far as topological invariants are concerned: all

topological invariants that may be extracted from symmetry data
can be inferred from the corresponding SI. The theory presented
in ref. 40 does not, however, relate SI to the topological invariants,
the defining quantities of topological states: a BS having non-zero
SI is necessarily topological, but the type of the topology in terms
of invariants is unknown. The explicit expressions of the SI in
terms of symmetry data are also missing in ref. 40.

This paper aims to complete the mapping between symmetry
data and topological invariants in systems with time-reversal
symmetry and significant spin–orbital coupling (the symplectic
Wigner–Dyson class or class AII in the Altland-Zirnbauer sys-
tem44). To achieve this, we first derive the explicit expression of
each SI in all space groups (Supplementary Tables 1–3) and then,
given any non-zero set of SI in every space group, we enumerate
all possible combinations of topological invariants that are
compatible with the SI (Supplementary Tables 4–8). These
invariants include: three weak topological invariants δw,i=1,2,3

8,
mirror Chern number Cm

23,45, glide plane (hourglass) invariant
δh24, rotation invariant δr21,46,47, the inversion invariant δi21,36,37,
a new Z2 topological invariant protected by screw rotations δs,
and finally a new Z2 topological invariant protected by S4-sym-
metry δS4 . The last two invariants are theoretically established in
Supplementary Note 1. In the main results, the strong time-
reversal invariant δt8 is assumed to vanish, so that the results are
restricted to TCI only, or states that can be adiabatically brought
to AIs in the absence of crystalline symmetries; the δt= 1 cases
are briefly discussed in the end of the Results section. The
exhaustive enumeration maps 478 sets of SI to 3133 linearly
independent combinations of topological invariants, as tabulated
in Supplementary Table 7. A guide for reading this table is offered
in Supplementary Note 7.

Results
An example showing the usage of our results. Before entering
into the derivation of the results, we use tin telluride (SnTe)
crystal having space group Fm�3m (#225) to illustrate how the
results should be used in Fig. 1. One should first compute the
symmetry data of the material, finding the numbers of appear-
ances for each irrep in the valence bands at the high-symmetry
momenta, namely, Γ, X, L, and W. This can be done in any
modern implementation of first-principles numerics and here we
use Vienna ab-initio simulation package48,49. From the symmetry
data obtained in the top of Fig. 1, we apply the formulae given in
Supplementary Tables 1 and 2 to find the SI, which in this case is
a single Z8 number, and we find z8= 4. After this, we can use
Supplementary Table 7 and find that z8= 4 corresponds to two
and only two possible sets of topological invariants shown on
the bottom of Fig. 1: it either has non-zero mirror Chern number
Cm(001)= 4 (mod 8) for the kz= 0 plane (and symmetry partners)
or has mirror Chern number Cm(110)= 2 (mod 8) for the kx+
ky= 0 plane (and symmetry partners). It is impossible, however,
to distinguish these two cases using symmetry data, but advanced
tools such as Wilson loops must be invoked. Further analysis
shows that the latter state appears in the real material23.

Layer construction as an general approach. A remarkable fea-
ture of all known TCIs is that any TCI can be adiabatically
(without gap closing) and symmetrically tuned into a simple
product state of decoupled, identical layers in real space, each of
which decorated with some two-dimensional (2D) topological
state21,50–54. This form of fixed-point wave function for a TCI is
called its layer construction (LC). An analogy to AIs can be drawn
to help understand the physical nature of LC in the following
aspects: although an AI is built from decoupled point-like atoms,
the building blocks of an LC are decoupled layers. Each atom in
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an AI is decorated with electrons occupying certain atomic
orbitals, whereas each layer is decorated with electrons forming a
2D topological state. The atomic orbitals of an atom in lattice
correspond to the irreducible representations of the little group at
that atomic position, whereas the possible topological states on a
layer also depends on the little group leaving the layer invariant.
In an LC, there are only two possible decorations: if the layer
coincides with some mirror plane of the space group the state for
decoration is a 2D mirror TCI with mirror Chern number Cm,
and if it does not coincide it is a 2D TI. We define elementary LC
(eLC) as an LC generated by a single layer in real space

ðmnl; dÞ � rjðmb1 þ nb2 þ lb3Þ � r ¼ 2πdmod2πf g ð1Þ

Here (mnl) are the Miller indices, and bi’s the reciprocal lattice
vectors; generation here means we take all elements g∈G to
obtain the set of layers E(mnl; d)≡ {g(mnl; d)|g∈G} by acting g
on (mnl; d). Every LC is a superposition of a finite number of
eLCs and, thanks to the additive nature of all known topological
invariants, the topological invariants of any LC is the sum of the
invariants of all constituent eLCs.

For any space group, we exhaustively find all eLCs using the
method detailed in Supplementary Note 3. Although the
calculation of topological invariants is difficult for an arbitrary
BS, it is easy for an eLC, thanks to its simple structure. In fact, the
invariants only depend on how many times each symmetry
element is occupied (see Supplementary Note 1 for proof,
wherein the occupation for glide plane or screw axis is subtle). A
symmetry element is a manifold in real space, where each point is
invariant under some symmetry operation. It could be a discrete

point such as an inversion center or a center of S4 : (x, y, z) → (−y,
x, −z), a line such as a rotation axis, or a plane such as a mirror
plane. In this way, topological invariants for each eLC are
calculated and tabulated in Supplementary Tables 5 and 6. On the
other hand, the SI of an eLC are also easily calculated, detailed in
Supplementary Note 5 again due to the decoupled nature of the
layers. Matching the SI with invariants for each eLC, we hence
find the full mapping between SI and topological invariants for
TCI. For intuitive understanding, we also plot a set of figures
(Supplementary Figs. 1–8) showing the invariants, SI, and phase
transitions of eLCs.

From indicators to invariants. Here we take space group P�1 as
an example to show the mapping between indicators and invar-
iants and leave the general discussion in the Supplementary
Notes 1 and 5. The space group P�1 has non-orthogonal lattice
vectors ai=1,2,3 and inversion symmetry. Within a unit cell, there
are eight inversion centers at (x1, x2, x3)/2 in the basis of lattice
vectors (the red solid circles in Fig. 2), where xi= 0, 1. These
inversion centers are denoted by Vx1x2x3

≡ (x1, x2, x3)/2 mod 1. A
generic layer (mnl; d) is given by L= {r|(mb1+ nb2+ lb3) · r=
2πd mod 2π}, where d∈ [0, 1), and at least one of m, n, l is odd
(or they would have a common factor). If d ≠ 0, 12, we have d ≠−d
mod 1, then under inversion a generated plane L′= (mnl; 1−
d) ≠ L is a different plane symmetric to L about the origin. In that
case, the two planes L and L′ can adiabatically move towards each
other without breaking any symmetry until they coincide, a
process illustrated in Fig. 2a. The state decorated on L and L′ are
2D TIs, and due to the Z2-nature, when L and L′ coincide, the
resultant double layer becomes topologically trivial. The eLC
generated by (mnl; d ≠ 0, 12) is hence a trivial insulator. For d= 0,
1
2, L is invariant under inversion, and always passes four of the
eight inversion centers, that is, Vi’s that satisfy the equation mx1
+ nx2+ lx3= 2dmod 2. For examples, if (mnl; d)= (010; 0), then
V000,001,100,101 are on L (the left yellow plane in Fig. 2a). As each
layer is decorated with 2D TI, eLC(mnl; d) (d= 0, 1

2) is the
familiar weak TI having weak invariants

δw;1 ¼ mmod2 δw;2 ¼ nmod2 δw;3 ¼ lmod2 ð2Þ

Now we turn to the inversion invariant δi, which is a strong
invariant robust against all inversion preserving perturbations.
Let us consider a perturbation that doubles the periodicity in the
(mnl)-direction, whereas preserving the inversion center at origin.
After the doubling, four of the eight inversion centers satisfying
mx1+ nx2+ lx3= 1 mod 2 are no longer inversion centers, so
that the plane (mnl, 12) after the doubling no longer passes through
any inversion center, and the generated eLC by (mnl, 1

2) can be

z8 = 4

Cm(001) = 4 mod 8

kz kz
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Fig. 1 A demonstration of the diagnosis for tin telluride of space group
Fm�3m (#225) using our results. The table on the top shows the symmetry
data obtained in the first-principles calculation (details given in text), where
the numbers of appearance of each irrep in the valence bands are listed for
each high-symmetry point in the face-centered-cubic Brillouin zone. From
the data one finds the SI z8= 4 using Supplementary Tables 1 and 2, and
then by searching for this indicator in Supplementary Table 7, two possible
sets of topological invariants are found, listed at the bottom left and bottom
right, respectively. The yellow planes in the Brillouin zone are where the
mirror Chern numbers Cm(001) and Cm(110) are defined. Indices in the
parentheses in subscript represent the directions of the corresponding
symmetry elements. The real material has been shown in ref. 23 to have the
topological invariants listed on the bottom right

a bx3

x1

x3

x1

x2 x2

Fig. 2 Layer constructions for space group P�1 (#2). a The yellow planes are
(010; 0) and (010; 1

2) respectively, and the two green planes are (010; d)
and (010; 1− d) with d≠ 0, 1

2. The arrows mean that the two green planes
can move towards each other without breaking inversion. b After doubling
the unit cell along x2-direction, the open dots are no longer inversion
centers as they were, whereas the solid dots remain. Again the arrows
mean that two green planes can move towards each other without breaking
the inversion symmetry, after unit cell doubling
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trivialized after the doubling by pairwise annihilating with its
inversion partner. Therefore, eLC(mnl, 12) can be trivialized, while
keeping the inversion symmetry about the origin, thus having
δi= 0. In Fig. 2b, we take (mnl)= (010) as an example and
doubled the unit cell. We see that the four inversion centers
marked by empty circles are not inversion centers in the new cell
and the blue plane at (010; 12) in the original cell becomes (010; 14)
in the new cell. The two blue planes can move and meet each
other at the yellow plane, denoted by (010;12) in the new cell. The
eLC generated by (mnl; 0)-plane, however, passes all eight
inversion centers in the enlarged unit cell and cannot be
trivialized without breaking inversion (yellow planes in Fig. 2b),
so that the inversion invariant δi= 1.

After finding the invariants for all possible eLCs, we turn to the
SI for each eLC. The SI group of P1 takes the form
Z2 ´Z2 ´Z2 ´Z4, wherein the first three are the weak TI
indicators z2w,i=1,2,3 and the last one is the z4 indicator. The
calculation method is briefly described in Supplementary Note 5
and here we only give the results. For eLC(mnl; 0) and eLC(mnl; 12),
their values are found to be (mmod 2, nmod 2, lmod 2, 2) and (m
mod 2, n mod 2, l mod 2, 0), respectively. For this space group, the
mapping from SI set to topological invariants is therefore one-to-
one: z2w,i= δw,i and z4= 2δi.

Convention dependence of topological invariants. A subtle but
important remark is due at this point. There are always eight
inversion centers in a unit cell in the presence of inversion
symmetry, and when translation symmetry is broken, only one,
two, or four of them remain. In the definition of inversion
invariant δi, one of the eight is chosen as the inversion center that
remains upon translation breaking. In the above example, when
the unit cell is doubled, the origin was chosen as the center that
remains, but if we chose V010= (12, 0, 0), which is a completely
valid choice, the four open circles in Fig. 2b are still inversion
centers but the solid circles are not after the doubling. In that
case, we would find that eLC(mnl, 12) has δi= 1 but eLC(mnl, 0)
has δi= 0. The inversion invariant δi hence depends on the
convention which one of the eight inversion centers in the unit
cell is chosen in the definition of δi. However, when we super-
impose the two eLCs into an LC that passes all eight inversion
centers in a unit cell, the value of δi is independent of the choice
of the inversion center, as all eight are occupied in this LC. We
emphasize that only if this is the case can we hope to observe the
physical properties, such as the characteristic boundary states
associated with the bulk invariant δi21, because physical obser-
vables should not depend on the conventions.

Moreover, similarly, as detailed in Supplementary Note 2, the
rotation (screw) invariant δr= 1 (δs= 1) is convention-
independent if and only if each rotation (screw) axis in unit
cell is occupied by the LC for n/2 mod n times, where n= 2, 4, 6
is the order of the rotation (screw) axis. For the S4 invariant δS4 =
1 or the hourglass invariant δh= 1 to be convention-independent,
the LC should occupy each S4 center or glide plane for an odd
number of times. Invariants that are convention-independent are
marked blue in Supplementary Tables 7 and 8.

The one-to-many nature of the mapping. In the example of
space group P�1, the mappings between indicators and topological
invariants are one-to-one. However, this is in fact the only space
group where mappings are bijective. By definition, different sets
of indicators must correspond to different sets of invariants, but
multiple sets of invariants may correspond to the same set of
indicators, i.e., the mapping from indicators to invariants is one-
to-many.

To understand the one-to-many nature of the mapping more
concretely, we look at the specific group P2/m, containing two
mirror planes, four C2-axes and eight inversion centers in each
unit cell, all marked in Fig. 3a. Now we consider two different LCs
illustrated in Fig. 3b, c: in Fig. 3b for LC1, two horizontal planes,
each decorated with a 2D TI, occupy all four C2-axes and all eight
inversion centers, and in Fig. 3c for LC2, two vertical planes, each
decorated with a mirror Chern insulator with Cm= 1, occupy the
two mirror planes and the eight inversion centers.

As all inversion centers are occupied in LC1 and LC2, in both
cases we have δi= 1. LC1 occupies all four C2-rotation axes, once
each, thus having nontrivial rotation invariant δr= 1, whereas
LC2 does not occupy any of the rotation axes, having δr= 0. On
the other hand, LC2 occupies the two mirror planes, each with 2D
TCI having Cm= 1. According to the calculation in Method
section LC2 has mirror Chern numbers Cm= 2 at kz= 0 plane
and Cm= 0 at kz= π plane; LC1, not occupying any mirror plane,
has vanishing mirror Chern number. LC1 and LC2 are therefore
topologically distinct states.

Now we turn to the SI of LC1 and LC2. For space group P2/m,
the SI have the same group structure Z2 ´Z2 ´Z2 ´Z4 as that of
its subgroup P�1. In this case, the value of each indicator remains
the same as we break the symmetry down to P�1. Viewed as LC in
P�1, both LC1 and LC2 are the superpositions of eLC(mnl, 0)
and eLC(mnl, 12), thus having, by the additivity of SI, z2w,i= 0 and
z4= 2.
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Fig. 3 Two layer constructions for space group P2/m, sharing the same set
of SI of (0002). a All symmetry elements of the space group in one unit
cell, including eight inversion centers (red solid circles), four rotation axes
(red solid lines), and two mirror planes (shaded planes). b, c LC1 and LC2
defined in the text, respectively. They have distinct topological invariants
but identical indicators. d 3D Blöch wave functions in LC2 as superpositions
of 2D Blöch wave functions with coefficients eik2x2 . Here we use red and
blue loops to represent the 2D wave functions having mirror eigenvalues i
and −i, respectively, wherein i wave functions have Chern number 1 and −i
wave functions have Chern number −1. For A-eLC the 3D Blöch wave
functions at k2= 0 and k2= π have the same mirror eigenvalues, leading to
identical mirror Chern numbers at k2= 0 and k2= π. Although for B-eLC
the Blöch wave functions at k2= 0 and k2= π have opposite mirror
eigenvalues, leading to opposite mirror Chern numbers at k2= 0 and k2= π.
e The two mirror-invariant planes (gray planes) in Brillouin zone
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The failure in distinguishing LC1 and LC2 by indicators reveals
a general ambiguity in the diagnosis of mirror Chern numbers.
We can add additional even number (2p) of A-eLC and even
number (2q) of B-eLC to LC1 such that the composite state has
the same SI and δr with LC1 but non-zero mirror Chern numbers
Cm,0= 2p+ 2q, Cm,π= 2p− 2q. On the other hand, we can also
add these additional eLCs to LC2 to get a state having the same SI
with LC2 but different mirror Chern numbers Cm,0= 2+ 2p+
2q, Cm,π= 2p− 2q. The proof here can be generalized to any
space group having mirror planes and perpendicular rotation
axes, providing that the order of the rotation is even. In all these
space groups, as shown in Supplementary Table 7, the TCIs
having invariants δr= 1 and Cm,0− Cm,π= 0 mod 2n and the
TCIs having δr= 0 and Cm,0− Cm,π= n mod 2n have the same
SI, here n is the order of the rotation axis. The two possible sets of
invariants shown in Fig. 1, wherein one is Cm(001)= 4 mod 8,
δr(001)= 0 and the other is Cm(001)= 0 mod 8, δr(001)= 1, are the
examples for n= 4.

Indicators for time-reversal topological insulators. In the SI
group of each space group, except #174 and #187–190, there is
one special indicator of Z2;4;8;12-type, denoted by zt, marked red
in Supplementary Tables 2 and 3. When this special indicator is
odd, the system is the well-known three-dimensional (3D) time-
reversal topological insulator40 (TI for short). The essential dif-
ference between a TI and a TCI is that the former only requires
time-reversal symmetry, such that it remains nontrivial even
when all crystalline symmetries are broken. TI does not have LCs,
so that the method we use does not apply to SI having zt∈ odd.
To construct states having zt∈ odd, we first notice that TI is
consistent with all space groups, such that for each space group,
we have at least one state that is a TI. Then we can superimpose
this TI with all existing LCs obtained, and generate gapped states
for all non-zero combinations of SI with zt∈ odd (but with five
exceptions discussed in Discussion section).

Regarding zt∈ odd, we comment that the value of zt generally
has a convention dependence on the overall signs in the definition
of inversion and the rotation operators. For example, in space
group P�1, the defining properties of the symmetry operators are
P̂2 = 1, T̂2 =−1 and ½P̂; T̂�= 0. It is easy to check that the overall
sign in front of P̂ can be freely chosen without violating any of the
above relations. In other words, without external references, it is
unknown a priori if, e.g., an s-orbital should be assigned with
positive or negative parity. Upon redefining P̂ ! �P̂, a state
having z4= 1 goes to z4= 3 and vice versa. In similar ways, it is
proved in Supplementary Note 4 that states having the
Z8-indicator z8= 1, 3, 5, 7 differ only by convention and so do
the states have Z12-indicator z12= 1, 5, 7, 11. In these cases, the
convention refers to the overall sign in front of inversion operator
and the sign in front of the rotation operator. It is difficult to
distinguish these states from each other experimentally. However,
here we emphasize that the SI z4= 1, 3 (so do the SI z8= 1, 3, 5, 7
and z12= 1, 5, 7, 11) have a relevant difference under a fixed
convention, which can be detected by the anomalous boundary
between the two phases. For example, suppose we have a
spherical sample of z4= 3 phase and fill the space outside the
sphere with z4= 1 phase, then as long as the geometry keeps
inversion symmetry, the boundary state on the spherical surface
should be identical with the boundary state between z4= 2 and
z4= 0 phases, which is known as one-dimensional helical mode
(see Supplementary Note 1 for details). This is because we can
deduct a background of z4= 1 phase both inside and outside the
sphere without changing the boundary state.

The space groups #174, #187, #189, and #188, #190, where one
cannot diagnose TI from SI, have the SI groups Z3 ´Z3 and Z3,

respectively, and the corresponding SI z3m,0 and z3m,π are the mirror
Chern numbers (mod 3) in the k3= 0 and k3= π planes. In #188
and #190 z3m,π is trivialized by nonsymmorphic symmetry and thus
the corresponding SI groups reduce to Z3. In these space groups,
the TI invariant is the parity of Cm,0−Cm,π

23 whereas SI have
ambiguity for the parities of mirror Chern numbers; thus, TI can
never be diagnosed from SI. For example, z3m,0= 1, z3m,π= 0 can
correspond to Cm,0= 1, Cm,π= 0 (a TI), or Cm,0=−2, Cm,π= 0
(not a TI).

Discussion
A byproduct of this study is a complete set of TCIs that can be
layer-constructed in all 230 space groups (Supplementary
Tables 5–8), even including groups not having SI. The abundance
of the states thus obtained naturally suggests the question: are all
TCI states exhausted in these layer constructions? We regret to
answer it in the negative: LC cannot give us the weak topological
insulator states in five space groups, namely #48, #86, #134, #201,
and #224. In any one of the five, there is a weak indicator z2w, but
all layer-constructed states have z2w= 0. A common character of
these space groups is that they have three perpendicular glide
planes {m001|12

1
20} m010j12012

� �
{m100|012

1
2} such that any single layer

having weak index z2w,i= 1 would be doubled along the i-th
direction and so the generated eLC has vanishing weak index.
Explicit (non-LC) tight-binding models for the z2w= 1 states are
given in Supplementary Note 6, completing the proof that for any
non-zero SI there is at least one corresponding gapped topological
state. These corner cases are somewhat surprising as weak TI have
so far been considered most akin to stacking of decoupled 2D TI.

Finally, we comment that all LCs can be used to build 3D
symmetry protected topological states of bosons and fermions
protected by space group G plus a local group GL. To do this one
only needs to decorate each layer with a 2D SPT protected by GL

instead of the 2D TI.
Towards the completion of the work, we have been aware of a

similar study55. To our knowledge, the results, when overlapping,
are consistent with each other.

Methods
A short review of SIs. For each momentum in the Brillouin zone, there is an
associate subgroup, called the little group, of the space group G, under the action of
which the momentum is invariant up to a reciprocal lattice vector. A point is a
high-symmetry point, denoted Kj, if its little group is greater than the little group of
any point in the neighborhood. A fundamental theorem is that each band at
momentum Ki or multiplet of degenerate bands corresponds to an irreducible
representation of the little group at Ki. The symmetry data of a BS is defined as the

an integer vector n, each element of which, n ξ
Kj

i

� �
, is the number of appearance of

the i-th irreducible representation in the valence bands at the j-th high-symmetry
momentum Kj, where i= 1, ..., rj labels the irreducible representations of the little
group at Kj. One could further define the addition of two symmetry data as the
addition of each entry, which corresponds to, physically, the superposition of two
BSs.

For a gapped BS, the elements of its symmetry data cannot take arbitrary
integers and there are constraints on the symmetry data known compatibility
relations40,41,43. For example, gapped-ness requires that the occupation numbers at

each Ki be the same, i.e.,
P

i n ξ
Kj

i

� �
= const. All compatibility relations are linear

equations so that the symmetry data satisfying all these relations again form a
smaller linear space, termed the BS space, denoted {BS}.

On the other hand, we consider the symmetry data of AIs. In AIs, the bands are
generated by decoupled atomic orbitals placed at certain Wyckoff positions in the
unit cell. By this definition, one finds that the symmetry data of AIs also form a
linear space, denoted {AI} (also called the space of band representations41).
Obviously a symmetry data n∈ {AI} satisfies all compatibility relations, so {AI} ⊆
{BS}. One then naturally considers the quotient space XBS= {BS}/{AI}. XBS is
always a finite group generated by several Zn¼2;3;4;6;8;12

40. Each generator of XBS is
called an SI.

The following properties of indicators should be mentioned: any two gapped
BSs having different sets of SI must be topologically distinct, and any two different
symmetry data having the same set of SI only differ from each other by the
symmetry data of an AI.
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In ref. 40, the authors calculate the group structure of the indicators for all
230 space groups. However, it does not give explicit formulae for the generators. In
order for application, we derive all these formulae in Supplementary Note 4.

Mirror Chern number of LC. Below we explicitly calculate the mirror Chern
numbers of LC1 and LC2 in Fig. 2. As shown in Fig. 3e, in BZ of space group P2/m
there are two mirror-invariant planes, i.e., the k2= 0 and k2= π planes; thus, we
have two mirror Chern numbers Cm,0 and Cm,π. We assume there are only two
occupied bands in the vertical 2D TCIs in LC2 and denote the corresponding Blöch
wave functions as ϕ ± i k2D; x2ð Þ�� �

. Here, ±i represent the mirror eigenvalues, where i
is the imaginary unit, k2D= (k1, k3) is the 2D momentum, and x2 is the position
along a2 where the 2D TCIs are attached. We also assume that the wave functions
with the mirror eigenvalue i (−i) give a Chern number 1 (−1) such that the 2D
mirror Chern number Cm= 1. Under the mirror operation M̂ the 2D Blöch wave
function ϕ± i k2D; x2ð Þ�� �

first get a mirror eigenvalue ±i and then move to the
mirror position −x2

M̂ ϕ± i k2D; x2ð Þ�� � ¼ ± i ϕ± i k2D;�x2ð Þ�� � ð3Þ

To calculate the mirror Chern numbers of LC2, we divide it into two subsystems:
the eLC generated from A layer and the eLC generated from B layer (Fig. 3c). As
the total mirror Chern numbers are the sum of mirror Chern numbers of the two
subsystems, we need only to analyse the two subsystems, respectively. The 3D
Blöch wave functions of A- and B-eLCs can be constructed as

ψA
± iðkÞ

�� � ¼
X

x2¼0; ± 1���
eik2x2 ϕ ± i k2D; x2ð Þ�� �

ð4Þ

ψB
± iðkÞ

�� � ¼
X

x2¼± 1
2; ±

3
2���

eik2x2 ϕ± i k2D; x2ð Þ�� �
ð5Þ

Due to Eq. (3), it is direct to show that ψA
i k1; 0; k3ð Þ�� �

and ψA
i k1; π; k3ð Þ�� �

, both
of which are superpositions of ϕi k2D; x2ð Þ�� �

and thus have the Chern number 1,
have the same mirror eigenvalue i (Fig. 3d). Thus, for A-eLC m the mirror Chern
numbers at k2= 0 and k2= π are all 1. On the other hand, ψB

i k1; 0; k3ð Þ�� �
and

ψB
i k1; π; k3ð Þ�� �

, again both of which have the Chern number 1, have mirror
eigenvalues i and −i, respectively (Fig. 3d). Thus, for B-eLC the mirror Chern
numbers at k2= 0 and k2= π are 1 and −1, respectively. Therefore, the total mirror
Chern numbers in momentum space are Cm,0= 2 and Cm,π= 0 for LC2. It should
be noticed that the values of Cm,0 and Cm,π do not depend on the two band
assumption we take: as long as the 2D TCI has Cm= 1, the results remain the same.
On the other hand, the mirror Chern numbers of LC1 should be zero for both k2=
0 and k2= π by the following argument. Without breaking mirror symmetry, each
vertical plane can bend symmetrically towards the mirror plane until the two halves
coincide on mirror-invariant planes in real space, due to the Z2-nature of each half,
the folded plane is topologically equivalent to a trivial insulator. As LC1 can be
smoothly trivialized without breaking mirror symmetry, it must have vanishing
mirror Chern numbers.

Data availability
The data and code that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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Catalogue of topological electronic 
materials
tiantian Zhang1,2,9, Yi Jiang1,2,9, Zhida Song1,2,9, He Huang3, Yuqing He2,3, Zhong Fang1,4, Hongming Weng1,5,6,7,8* &  
chen Fang1,4,6,7,8*

Topological electronic materials such as bismuth selenide, tantalum arsenide and sodium bismuthide show unconventional 
linear response in the bulk, as well as anomalous gapless states at their boundaries. They are of both fundamental and 
applied interest, with the potential for use in high-performance electronics and quantum computing. But their detection 
has so far been hindered by the difficulty of calculating topological invariant properties (or topological nodes), which 
requires both experience with materials and expertise with advanced theoretical tools. Here we introduce an effective, 
efficient and fully automated algorithm that diagnoses the nontrivial band topology in a large fraction of nonmagnetic 
materials. Our algorithm is based on recently developed exhaustive mappings between the symmetry representations of 
occupied bands and topological invariants. We sweep through a total of 39,519 materials available in a crystal database, 
and find that as many as 8,056 of them are topologically nontrivial. All results are available and searchable in a database 
with an interactive user interface.

Symmetry and topology in solids are an entangled pair of concepts in 
modern physics. Since 2005, theorists1–3 have been aware that, in the 
presence of time-reversal symmetry, there are insulators (or nondegen-
erate ground states with a finite excitation gap in general) that deviate 
drastically from atomic insulators. These new special insulators host 
nontrivial topology in their electronic band structures, quantified by a 
new, global good quantum number—the Z2 invariant4,5. This invariant 
takes the value of either 0 or 1, and depends on the wavefunctions of 
the valence bands in the entire Brillouin zone.

Topological insulators, protected by time-reversal symmetry with 
the Z2 invariant, were only the first member of an entire family of topo-
logical materials to come in the following decade. It is now understood 
that topological invariants are the defining properties of all topolog-
ical materials and that they can take different forms, which depend, 
and depend only, on the dimensionality and the symmetries of the  
system6–8. These symmetries range from on-site symmetries such as 
time reversal and particle–hole interchange, to spatial symmetries 
such as translation3, reflection9, rotation10–12 and nonsymmorphic  
symmetries13,14, each of which brings new and independent topologi-
cal invariants. Hence a full characterization of the topology of a given 
crystal amounts to listing all of the invariants protected by all elements 
in the corresponding space group.

Parallel to this line of investigation has been the emergence of the 
field of topological semimetals15–20, in which the conduction and the 
valence bands have band crossings—that is, topological nodes that  
cannot be removed by symmetry-preserving perturbations. Depending 
on the degeneracy and dimensionality of their nodes, topological  
semimetals can be further classified into nodal-point and nodal-line 
semimetals. A topological semimetal is characterized by the number 
and the type of all of its band crossings21.

Numerical prediction of topological materials thus requires the 
evaluation of all topological invariants, or the identification of all  
topological nodes, both of which amount to involved calculations22. 

The expressions of some topological invariants are highly compli-
cated13,23,24 for direct evaluation, and some invariants do not even 
have close-form expressions10–12. The challenge has prevented people 
from carrying out any large-scale, comprehensive search for topological 
materials, and successful examples have been ascribed mostly to the 
experience and intuition of researchers.

Following the theory of topological quantum chemistry25 and that of 
symmetry-based indicators26, a series of recent theoretical works has 
greatly improved the situation by completely mapping the irreducible  
representations of valence bands onto topological invariants27–29 and 
topological nodes30. Recognizing that these theories can be fused 
together with first-principles numerical methods, we have developed 
a fully automated search algorithm that can readily be used to scan 
through large materials databases.

Algorithm
We now briefly describe the automatic diagnostic process that we have 
designed for any given nonmagnetic crystal (Fig. 1). Some important 
technical details needed to reproduce our findings are given in the 
Methods.

In the preparation phase, we import a material that is simultaneously 
registered in the online crystal database the Materials Project (https://
materialsproject.org)31 and the Inorganic Crystal Structure Database 
(ICSD; http://www2.fiz-karlsruhe.de/icsd_home.html)32. If the material  
has a magnetic moment higher than 0.1 µB per unit cell (according to its 
Materials Project record), we label it as ‘magnetic’ and stop further anal-
ysis, as the theory works for nonmagnetic materials only. Also excluded 
from further analysis are materials with an odd number of electrons 
per unit cell, which are labelled as ‘conventional metals’. Otherwise, we 
proceed to standardize the input crystal structure for the next phase.

In the calculation phase, the imported atomic positions and a certain 
set of pseudopotentials are first used to obtain the self-consistent elec-
tron density using the Vienna ab initio simulation package (VASP)33. 
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Once the density converges, it is used to compute the energy levels and 
wavefunctions at a given list of high-symmetry points in the Brillouin 
zone. At each high-symmetry point, we rank the energy levels from low 
to high, and we define the first N bands as the valence bands (Fig. 2), 
where N is the number of electrons per unit cell. (Note that this working 
definition deviates from the conventional notion of valence bands.) We 
store the wavefunctions of all occupied bands at high-symmetry points 
for the next phase.

In the analysis phase, using a script in conjunction with the data 
on the Bilbao Crystallographic Server34, we identify the irreducible 
representation for each (multiplet of) valence band(s). Then, from 
this, another script is used to check whether there is band touching or 
crossing between the Nth and the N+1-th band at any high-symmetry 
point or along any high-symmetry line, the latter of which requires an 
exhaustive list of compatibility relations, also available on the Bilbao 
Crystallographic Server thanks to recent efforts25,34. A material that 
has degeneracy at high-symmetry points or high-symmetry lines 
is labelled as high-symmetry-point semimetal (HSPSM) or high- 
symmetry-line semimetal (HSLSM), respectively. For a band structure  
that does not have such degeneracy, we proceed to compute all of its 
symmetry-based indicators. Symmetry-based indicators26 directly 
inform whether the material is a topological insulator, a topological 
crystalline insulator (TCI) or a topological semimetal, and give all  
possible sets of the topological invariants27,28 or topological nodes30. 
From the values of the indicators, the material can be labelled as 
generic-momenta semimetal (GMSM, having topological nodes at 
non-high-symmetry momenta), topological insulator or TCI. This 
concludes the final phase of the algorithm.

Identification of five topological classes
We have run the above algorithm through a total of 39,519 crystals, 
of which we find 10,348 to be magnetic, and 2,483 to be conventional 
metals. We carried out first-principles calculations for 26,522 materials, 
from which we detect 8,056 topological materials in the presence of 
spin–orbit coupling, sorted into 2,713 HSPSMs, 2,292 HSLSMs, 1,814 
topological insulators and 1,237 TCIs.

In electronic systems, the spin–orbit coupling is always finite, 
but there are materials consisting of light atoms that have negligible  
spin–orbit coupling—that is, the spin–orbit coupling is much smaller 
compared with other energy scales such as the Fermi energy or temper-
ature. For these materials, diagnosing the topology while assuming an 
absence of spin–orbit coupling is physically more relevant. For example,  
identifying graphene as a Dirac semimetal is more relevant than 
declaring it to be a topological insulator with a gap of roughly 10−6 eV. 
Because of this, for each material, we carry out the calculation and 
analysis twice—once with spin–orbit coupling (‘soc setting’) and once 
without (‘nsoc setting’). When using the nsoc setting, materials that 
have band degeneracy between the valence and conduction bands at 
high-symmetry points and along high-symmetry lines are also sorted 
as HSPSM and HSLSM, respectively. If the band structure does not 
have any such degeneracy, we proceed to calculate the symmetry-based 
indicators. In the absence of spin–orbit coupling, all indicators corre-
spond to topological nodes at non-high-symmetry momenta30, and 
therefore materials that have non-zero indicators are all GMSMs. The 
type and configuration of the topological nodes for each non-zero set 
of indicators are found in ref. 30. For the nsoc setting, we find 8,889 
materials to be topological, classified as 5,508 HSPSMs, 3,269 HSLSMs 
and 112 GMSMs.

Each material is now labelled with one of the following: HSPSM, 
high-symmetry point semimetal (both settings); HSLSM, high-symmetry  
line semimetal (both settings); GMSM, generic-momenta semimetal 
(nsoc setting only); TI, topological insulator (soc setting only); TCI, 
topological crystalline insulator (soc setting only); magnetic; conven-
tional metal; or insulator with trivial indicators. Out of these, we consider  
the first five classes to be topological materials; we list the materials 
according to their class in Supplementary Tables I–V. In Supplementary 
Table I, each HSPSM material is shown together with high-symmetry 
points at which partial fillings occur, and irreducible representations that 
are partially filled. Each HSLSM material in Supplementary Table II is 
shown together with the high-symmetry line(s) at which band crossings 
between the Nth and the N+1-th bands appear. Each GMSM, TI and TCI 
material—listed in Supplementary Tables III, IV and V respectively—is 
shown together with the values of its symmetry-based indicators.
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Fig. 1 | Flow chart for our automatic diagnostic algorithm. For a given 
material found in the ICSD and the Materials Project, we first check 
against the record at the Materials Project to see whether it is nonmagnetic 
(that is, does it have a magnetic moment less than 0.1 µB per unit cell), and 
whether there is an even number of electrons in one primitive unit cell. If 
yes for both, we feed the material into a density-functional-theory (DFT) 
calculation of the band structure and compute symmetry data, before 
checking whether there are partially filled irreducible representations at 
high-symmetry points. If not, the symmetry data are checked against all 

compatibility relations, and, should all relations be satisfied, the data are 
fed into the calculation of symmetry-based indicators. At each checkpoint, 
a material either goes on to the next step, or is labelled as magnetic, 
conventional metal, high-symmetry point semimetal or high-symmetry 
line semimetal. At the final step, depending on the values of indicators, a 
material is labelled as GMSM, TI, TCI or insulator with trivial indicators. 
At the first-principles calculation step and all following steps, two possible 
settings are applied to all steps: nsoc or soc. DFT, density functional 
theory; IND, symmetry-based indicator(s); SG, space group.

a b c d e

Fig. 2 | Definition of valence bands and conduction bands. The red 
band represents the top valence and the blue the bottom conduction band, 
for the following cases: a, insulator or semiconductor; b, compensation 
semimetal; c, topological semimetal; d, metal with an odd number of 
electrons per unit cell on a centrosymmetric lattice; and e, metal with 
an odd number of electrons per unit cell on a noncentrosymmetric 
lattice. The green dots in d, e represent Kramer’s degeneracy owing to 
time-reversal symmetry. Note that our definitions for d, e differ from 
conventional definitions.
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Our extensive sweep of materials includes a large fraction of all 
crystals ever synthesized, and we detect nontrivial topology in about 
30% of the 26,522 calculated nonmagnetic materials. This abundance 
of topological materials overturns the sentiment of many, including us, 
that they are special and rare in nature. Without any tuning parameter  
or human intervention, these many materials from the sweep include 
almost all topological materials known so far, such as bismuth  
selenide (Bi2Se3), a topological insulator; tin telluride (SnTe), a TCI; 
and sodium bismuthide (Na3Bi), a topological semimetal. More 
importantly, this catalogue includes materials for which the nontrivial 
topology was previously unknown.

Representative materials from the five topological classes
Below we choose one candidate from each class for discussion. Out of 
the five, four have not, to the best of our knowledge, been discussed 
previously in the literature, and four host new topological invariants or 
topological nodes that have not been experimentally discovered in real 
materials. We find barium phosphorus platinum (BaPPt; Fig. 3a)35,36 
to be a HSPSM, in which the conduction and the valence bands meet 
at the high-symmetry points Γ and R. The degeneracy at R is sixfold- 
stabilized by nonsymmorphic space-group symmetries, and importantly  
there is an electron pocket near R. These facts qualify BaPPt  
(soc setting) as a good candidate for the study of topological nodes 
beyond Weyl and Dirac nodes in real materials37.

From the HSLSM class, we highlight cubic barium fullerene (BaC20; 
Fig. 3b; nsoc setting), from space group 223; this material has one 
fullerene and three barium atoms per unit cell. The violation of com-
patibility relations along Γ–X, Γ–M and Γ–R indicates band crossings 
along these three lines and their symmetry partners. Further analysis 
(see Methods) shows that these crossing points are parts of the nine 
interconnected nodal rings that are centred at Γ.

The osmium double perovskite Sr2NiOsO6 (Fig. 3c; nsoc set-
ting), a GMSM, does not have any band crossings along any of the 

high-symmetry lines, but the symmetry indicators of (0002) imply 
that at generic momenta there must be 2-mod-4 nodal rings where 
the conduction and the valence bands cross. Each of the rings has  
Z2-topological charge38, making Sr2NiOsO6 the first candidate  
electronic material (with small spin–orbit coupling) that hosts Z2-
nontrivial nodal rings.

Sodium oxocuprate (NaCuO; soc setting) is a new noncentrosym-
metric topological insulator (Fig. 3d), having three band inversions 
between the d-orbital and the s-orbital at Γ, with an inverted bandgap  
of about 0.1 eV. For noncentrosymmetric systems, the classical  
Fu–Kane formula39 does not apply, so an eigenvalue diagnosis would be  
impossible without our new method.

Finally, zirconium titanium hydride (Zr(TiH2)2; Fig. 3e) has band 
crossings along L–W without spin–orbit coupling, but as the coupling 
turns on it opens a full gap of about 10 meV at all momenta, making the 
material a TCI. The symmetry indicators of (0002) pin down the topo-
logical invariants of this TCI to two possible sets. Our method cannot 
distinguish them further, but a calculation of the mirror Chern number 
at the kz = 0 plane helps us to choose the correct set (see Methods). In 
this set, all non-zero invariants are protected by screw-rotation symme-
tries or glide-plane symmetries, so that Zr(TiH2)2 is a materials candi-
date for a screw-axis Z2 TCI, having one-dimensional helical edge states 
on its surface without two-dimensional surface states for certain sample 
configurations (see Methods for details). Such TCIs are also known as 
second-order topological insulators40–42.

The entire catalogue is available at http://materiae.iphy.ac.cn/, which 
has an interactive user interface that facilitates searching of the vast 
amount of data. It also shows the band structures and density of states 
for each material diagnosed as topological.

Discussion
Although the abundance of topological materials in nature is good 
news, the immediate difficulty is that we do not have a simple way 
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Fig. 3 | The five candidates for the five classes of topological material. 
a, f, g, j, The HSPSM BaPPt, which has sixfold degeneracy near the Fermi 
energy at R. b, h, k, The HSLSM BaC20, which has negligible spin–orbit 
coupling and nine connected nodal rings centred at Γ. c, l, The GMSM 
Sr2NiOsO6, with nodal rings that have Z2-monopole charge (nsoc setting). 

d, m, The topological insulator NaCuO. e, i, n, The TCI Zr(TiH2)2. For 
each candidate material, we plot the band structure in a–e, the Brillouin 
zone with high-symmetry points in j–n, and if necessary, zoomed-in 
regions of the band structure f–i.
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of ranking these many candidates, because there is no universal 
standard for an ideal topological material. Sometimes it is one that 
has a topological bandgap or topological Fermi surface that does not 
coexist with trivial pockets of carriers; but sometimes we particularly 
look for the presence and interplay of the latter (for example in the 
case of the recently discovered topological superconductivity in iron 
selenide, FeSe43–45). Some people are interested in three-dimensional 
topological states46; but quasi-two-dimensional topological materi-
als are also desirable for good reasons47. Some want the coexistence 
of band topology and ferroelectricity48, and some are looking for a 
high receptibility to magnetic or superconducting dopants49. We have 
adopted a relatively traditional standard in the field of topological mate-
rials: that better topological gapped materials have larger energy gaps 
(for topological insulators and TCIs), and better topological gapless 
materials have a lower density of states (for HSPSMs, HSLSMs and 
GMSMs), with the caveat that the criterion of low density of states 
does not apply to nodal-line semimetals in general. For each material 
in the catalogue, we have computed the density of states versus energy, 
from which we have extracted the energy gap (if any) and the density 
of states at the Fermi energy. On the basis of these two pieces of data, 
we have ranked the materials from each class for every space group, 
using || to separate materials that are better by this standard from the 
rest (see Supplementary Information). We emphasize that our ranking 
should only be considered as a reference, and we suggest that readers 
interested in a particular candidate material should eye-inspect the 
band structure shown in our online database.

The main outcome of our work is the sorting of nonmagnetic mate-
rials into topological classes; we did not aim to find the ‘best’ topo-
logical materials. However, it is natural to ask how we would compare 
the materials found in this exhaustive, sweeping search with those 
found previously in an ad hoc fashion. We note that, as almost all pre-
viously known topological materials have already been included in the 
catalogue, we can only compare the known materials with the new 
members in each class. A simple comparison reveals that the newly 
found materials are not substantially better than the known ones, as 
judged by our standard of a large gap or smaller density of states. The 
previously known bismuth selenide (Bi2Se3) is still the best candidate 
for a topological insulator in the catalogue, having a gap of around 
0.31 eV—larger than the roughly 0.16-eV gap in the best new candidate, 
strontium lead telluride (Sr2Te4Pb). The most studied TCI is SnTe, with 
a gap of 0.188 eV, larger than the 0.072-eV gap of the new candidate 
Yb3PbO (an ytterbium perovskite). The best HSLSM in the literature 
is probably Na3Bi, with space group 194; among the newly discovered 
materials, the best such material is probably indium antimonide (InSb), 
with space group 186. The two materials both have Dirac points along 
Γ–A and a vanishing density of states.

Our method has demonstrated its power in showing the abundance 
of nontrivial topology that nature has to offer. However, it is equally, 
if not more, important to expound on the limitations of the method, 
and to offer caveats to users of the catalogue, which we summarize as 
follows.

First, the entire theoretical framework of our diagnosis is based on 
the assumption that valence electrons can be characterized by the phys-
ical picture of band theory. However, this assumption breaks down in 
the presence of strong electron correlation. For this reason, we cannot 
hope to include any strongly interacting symmetry-protected topolog-
ical states50 that have been theoretically proposed, such as the Haldane 
chain51.

Second, we have used first-principles simulations to calculate band 
structures without any corrections ascribed to electron correlation, 
for the latter require additional artificial parameters. For this reason, 
band structures of materials consisting of d- and f-electrons52,53 near 
the Fermi energy may be incorrect. Thus, in Supplementary Tables I–V, 
certain elements that are known to host partially filled d- or f-electrons 
in compounds are marked with blue or red, respectively. Users should 
be aware that the first-principles calculation has a tendency to overes-
timate the inverted bandgap.

Third, our method—or indeed any eigenvalue diagnosis method—
takes as inputs only those symmetry data that are found at certain 
high-symmetry points, and therefore cannot detect band inversions 
away from these points. This is the origin of the one-to-many nature of 
the mappings from symmetry-based indicators to topological invari-
ants27,28 or nodes30. Physically, it means that if some nontrivial topology 
derives from band inversions away from any high-symmetry point, the 
diagnosis would not detect it, instead identifying the material as trivial. 
This leads to the absence of the famous Weyl semimetal tantalum arse-
nide (TaAs) from the catalogue. TaAs54,55 has band inversions at Σ and 
S, neither of which is a high-symmetry point.

Fourth, our method assumes the nonmagnetic state of a material 
when diagnosing topology, but cannot diagnose magnetism itself. 
The magnetic moment listed on the Materials Project website has 
been calculated using a first-principles simulation with an addi-
tional parameter, Hubbard U, and a ferromagnetic initial state. This  
simple numerical diagnosis is not supposed to capture any type of 
antiferromagnetism, and may also misidentify some ferromagnetism 
as nonmagnetism (and vice versa). We suggest that readers interested 
in a particular material should check for possible magnetism in the 
experimental literature.

Fifth, in some materials—such as bismuth bromide (Bi4Br4) and lith-
ium silver antimide (Li2AgSb)—the ordering of bands near the Fermi 
energy depends critically on the lattice constants or the choice of pseu-
dopotential. As a rule, we have used the experimental lattice parameters 
without relaxation. But if the gap in a material is very small, we would 
suggest doing the calculation again with slightly different input parame-
ters (such as relaxed lattice constants) to see whether the result is stable.

Finally, conventional metals can in principle also be called HSPSMs, 
because at each of the eight time-reversal invariant momenta, the Nth 
and the N+1-th bands necessarily touch owing to Kramer’s degeneracy. 
However, these materials usually have trivial carrier pockets that are far 
larger than the topological ones, and we therefore exclude them from 
our list of topological materials.

Conclusion
We have designed an algorithm for quickly diagnosing nontrivial 
topology in nonmagnetic materials, using only the symmetry data 
from high-symmetry points in the Brillouin zone as inputs. We have 
applied the algorithm to all materials registered in the Materials Project 
and the ICSD. Contrary to popular thinking that nontrivial topology 
is exotic and scarce, we have found that more than 30% (8,056 out of 
26,688) of the studied materials are topological.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-0944-6.
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MEthodS
Choice of input crystal data. Crystal data—including space-group numbers, 
lattice parameters (a, b, c, α, β, γ) and atomic positions—are imported from the 
experimental values recorded in the Materials Project31,56. To the best of our knowl-
edge, the Materials Project collects experimental crystal data from the ICSD32 and 
reorganizes them. The ICSD has duplicated entries; to handle this, the Materials 
Project identifies two materials as the same if their lattice parameters and atomic 
positions differ by values less than a given threshold. The Materials Project also has 
a requirement for the accuracy of atomic positions, so that if the position of any 
atom cannot be experimentally determined up to a preset error, the corresponding 
material would not be added to the Materials Project. Taking into account dupli-
cates and data accuracy, the 199,466 records in ICSD become 39,519 records in 
the Materials Project.

The Materials Project is a database of materials with their properties obtained 
from standardized numerical simulations. One of the properties is magnetism, 
which is given in terms of the total magnetic moment per unit cell, in units of 
µB. This value is obtained from a density functional theory (DFT) calculation 
or a DFT + U calculation, with a ferromagnetic initial state of the electrons. We 
comment that a more reliable way of determining potential magnetism is to use 
various possible magnetic structures in the initial state, and to compare the con-
vergent energies, identifying the lowest energy state as the ground state. However, 
it is unclear how one could reasonably enumerate all candidate magnetic struc-
tures, so the diagnosis for magnetism is generally considered difficult. We note that 
for several materials, the calculated magnetic moment differs from experimental 
data. For example, MnAlCo2 and Fe5Si3 have been found to be ferromagnetic at 
lower temperatures, yet they show negligible magnetic moments in their Materials 
Project records. We note that antiferromagnetism is not thought to be captured by 
the numerical simulations either.

Band topology is mostly stable against small perturbations in the lattice 
parameters. Yet there are certain materials for which the gaps are so close to the 
inversion point that a small change in lattice parameters leads to a transition 
from nontopological to topological and vice versa. For example, for Ca3NBi and 
TlBiSe2, results of the topological diagnosis depend on whether the experimental 
value or the calculated value of the lattice constants is used. Here, the calculated 
value refers to the value after a simulated relaxation of the lattice, optimizing 
the total energy.

In addition, before feeding the crystal data to the DFT calculation, we check 
the consistency between the atomic positions and the space group. We find 166 
materials that do not pass the consistency test within an error of up to 0.1 Å, and 
exclude them from further processing.
Band topology in conventional metals. Materials that have an odd number of 
electrons per unit cell are labelled as conventional metals and excluded from fur-
ther diagnosis. The reason is simple: all these materials should be classified as 
HSPSMs, so analysis becomes unnecessary. This is because all bands are at least 
doubly degenerate at time-reversal momenta owing to Kramer’s degeneracy. Any 
odd number filling then necessarily leads to partial filling at every time-reversal 
momentum, making the material a HSPSM.

We note that further classification among these metals, which we do not per-
form here, amounts to determining the dimension of the band crossing. For 
example, if there is inversion symmetry, then time reversal and inversion jointly 
protect double degeneracy at every momentum in the Brillouin zone: this is three- 
dimensional crossing. In the presence of a twofold screw axis, this symmetry 
together with time reversal lead to double degeneracy at an entire high-symmetry 
plane, which is a two-dimensional crossing at the boundary of the Brillouin zone. 
In the presence of a glide plane, this symmetry together with time reversal lead to 
double degeneracy along certain lines at the boundary of the Brillouin zone, and 
this crossing is one dimensional. If none of screw axis, glide plane or inversion 
is present, the bands are generally nondegenerate at any momentum away from 
a time-reversal invariant momentum, so that these momenta are discrete Weyl 
points—that is, zero-dimensional crossings.
Settings for the first-principles calculation. All of the calculations herein are 
performed by VASP33,57–59 with the generalized gradient approximation (GGA) 
of the Perdew–Burke–Ernzerhof (PBE)-type exchange-correlation potential. The 
pseudopotential files that we used are from the VASP software package and are 
listed at http://materiae.iphy.ac.cn/. The cut-off energy of the plane wave basis set 
is set to be the ENMAX value in the pseudopotential file plus 25%. A Γ-centred 
Monkhorst–Pack grid with 30 k-points per Å−1 is used for the self-consistent 
calculations. A maximum number of electronic self-consistency steps is given in 
our calculations, such that a material for which the calculation does not converge 
within 300 self-consistency loop steps is labelled and discarded. Two itinerant 
schemes are used in this process: the special Davidson block iteration scheme, and 
residual minimization method direct inversion in the iterative subspace (RMM-
DIIS). About 400 materials are not converged or converge to wrong states in the 
nsoc setting, and 600 in the soc-setting.

While the mapping from symmetry data to topology data is mathematically 
rigorous, the validity of GGA depends on the actual material: if a material has a 
significant correlation effect at the Fermi energy, the results are likely to be inac-
curate. For example, for compounds containing rare-earth elements with possibly 
partial-filling f-orbitals, the strong correlation effect is dominant; we have left these 
materials for further detailed study. From experience, in Supplementary Tables I–V 
we have highlighted a few elements that often induce strong correlation effects 
in compounds owing to partially filled d- or f-shells (blue for d and red for f). 
We have not highlighted titanium, yttrium, zirconium, niobium, molybdenum,  
lanthanum, lutetium, hafnium, tantalum, tungsten and platinum because, although 
they have partially filled d-shells, in many known cases they do not bring about 
strong correlation effects.

The original data loaded from the Materials Project are not in a unified convention;  
for example, the orientation of the primitive cell is arbitrary, as is the choice of 
origin point. In order to implement automated high-throughput calculations and 
to ensure that VASP can find the right symmetry, we symmetrize and standardize 
the atomic positions using PHONOPY60 after loading the lattice parameters and 
atomic positions. At this step, we discarded 166 materials for discrepancy in the 
space groups identified in PHONOPY and those given in the databases, up to an 
error tolerance of 0.1 Å in atomic position.
Extracting irreducible representations. The irreducible representation for 
each group of degenerate valence bands is obtained by calculating the character 
of each symmetry operation and looking up the character tables on the Bilbao 
Crystallographic Server. To be specific, first the plane wave expansion coeffi-
cients of wavefunctions are read from the VASP output file, and then, by applying  
different space-group symmetry operations to the wavefunctions, we obtain the 
corresponding character. Attention needs to be paid in the choice of convention in 
symmetry operations, including the coordinate origin and orientation, as well as 
the spin rotation axis of the SU(2) part of the symmetry operation. In determining 
the presence of degeneracy, we use an energy error of min(0.5 meV, 0.1 Δk, where 
Δk is the gap between valence bands and conduction bands at the k-point) to avoid 
possible numerical level splitting from VASP. Failing to find irreducible representa-
tions formed by ‘degenerate’ bands identified in this way implies a low quality 
of convergence. In such cases we improve the convergence threshold and redo 
the self-consistent and non-self-consistent calculations until we can successfully 
identify each group of degenerate bands with a certain irreducible representation.
Nodal lines in BaC20. Using the nsoc setting, we identify BaC20 (space group 223) 
as an HSLSM, the band structure of which breaks compatibility relations 
along Γ–X, Γ–M and Γ–R. Below we show that these crossings are intersec-
tions of nine nodal rings with high symmetry lines in the Brillouin zone, 
wherein three of the rings lie in the = =k i x y z0( , , )i  planes and six lie in the 

± = = ≠k k i j x y z i j0( , , , , )i j  planes. The =k 0i  rings can be diagnosed from the 
crossings along Γ–X and Γ–M, both of which interchange a valence band having 
a mirror m({ 0})001  eigenvalue of −1 with a conduction band with a mirror eigen-
value of +1. Because of these crossings, the valence bands at Γ have one more (or 
less) −1 (or +1) mirror eigenvalue than the valence bands at X or M, implying 
nodal ring(s) protected by the mirror symmetry in the =k 0z  plane. Such mirror 
eigenvalues at Γ, X and M allow a few possible configurations of the ring(s). For 
example, there may be a single ring surrounding Γ; or there may be a single ring 
surrounding X, a single ring surrounding Y (that is, the C3 ({3 000})111  partner of 
X in the ky axis) and a single ring surrounding M; and so on. Further band- 
structure calculation shows that BaC20 belongs to the first case, that is, it has a 
single ring surrounding Γ in the =k 0z  plane. Owing to the C3 rotation symmetry, 
there are in total three nodal rings in the =k 0i  planes (Extended Data Fig. 1a). 
The ± =k k 0i j  rings can be diagnosed in a similar way: the crossings along the 
Γ–M and Γ–R interchange a valence band having a glide ∣m({ })110

1
2

1
2

1
2

 eigenvalue 
− ⋅ /e t ki 2 with a conduction band having a glide eigenvalue − − ⋅ /e t ki 2 , where 

= ( )t 1
2

1
2

1
2

. It follows that valence bands at Γ have one more (less) − ⋅ /e t ki 2 

− − ⋅ /e( )t ki 2  glide eigenvalue than the valence bands at M or R. On the other hand, 
the band structure along R–X, and along R–Z, where Z is the C3 partner of X in the 
kz axis, preserves all the compatibility relations; thus Z has the same glide eigen-
values with R and M. Therefore, similar to the case for the kz = 0 plane, the glide 
eigenvalues allow a few possible configurations for the ring(s) in the − =k k 0x y  
plane. For example, there may be a single ring surrounding Γ, or there may be a 
single ring surrounding M, a single ring surrounding R, and a single ring surround-
ing Z, and so on. Further band-structure calculation certifies the first case—that 
is, there is a single ring surrounding Γ in the − =k k 0x y  plane. Then, owing to the 
space-group symmetries, there are in total six nodal rings in the ± = ≠k k i j0( )i j  
planes (Extended Data Fig. 1b). Numerical calculations show that the rings in the 

± = ≠k k i j0( )i j  planes have a larger radius than the rings in the =k 0i  planes.
Topological invariants of Zr(TiH2)2. In order to determine the topological invar-
iants of Zr(TiH2)2 (space group 227) with the soc setting, we look up its symmetry- 
indicator set—which is (Z2w−1; Z2w−2; Z2w−3; Z4) = (0002) —in Extended Data 

http://materiae.iphy.ac.cn/
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Table 1 and find that there are only two possibilities for the invariants for this 
symmetry-indicator set. In the first case, the mirror Chern number on the 110 plane 
in the Brillouin zone (the yellow plane in Extended Data Fig. 2a) is 2 (mod 4),  
whereas in the second case this mirror Chern number is 0 (mod 4). By ab initio 
calculation, as described in the next paragraph, we find that this mirror Chern 
number is 0 and thus Zr(TiH2)2 belongs to the second case. In this case, nontrivial 
TCI invariants include: (i) an hourglass invariant protected by glide symmetry 
m{ 0}001

1
4

1
4

; (ii) a rotation invariant protected by {2 000}110 ; (iii) an inversion invar-
iant; (iv) a screw invariant protected by {4 0 }001

1
4

1
4

; and those invariants protected 
by symmetries equivalent with above symmetries. All of these invariants are  
Z2-type and correspond to either two-dimensional or one-dimensional anomalous 
surface states.

Here we propose two real space configurations to detect such surface states. In 
Extended Data Fig. 2c, we show the one-dimensional helical modes protected by 
screws and/or inversion. The cubic sample is cut out along the (100), (010) and 
(001) surfaces, all of which are fully gapped. As long as the cube preserves inversion 
symmetry, there must be an inversion-symmetric one-dimensional helical mode 
on the boundary, whose shape depends on the experimental situation. However, 
in presence of the fourfold screw symmetries, which protect nontrivial screw invar-
iants, the shape of helical mode is further constrained. We consider the sample to 
be large enough such that the fourfold screw symmetry, {4 0 }001

1
4

1
4

, is preserved 
on the side surfaces far away from the top and bottom surfaces. Then, as discussed 
in refs 9,10, four one-dimensional helical modes run along the screw axis and trans-
form to each other in turn under the screw operation. Similarly, along any equiv-
alent screw axis there also exist four one-dimensional helical modes. The helical 
mode shown in Extended Data Fig. 2c is a configuration satisfying all of the above 
symmetry conditions. In Extended Data Fig. 2d, we show the two-dimensional 
surface states protected by glide and/or twofold rotation symmetries. The sample 
is cut out along (110), (110) and (001) surfaces, wherein the (001) surface is fully 
gapped whereas the (110) and (110) surfaces are gapless. Owing to the hourglass 
invariant being protected by m{ 0}001

1
4

1
4

, the (110) surface must have an hourglass 
mode, and owing to the rotation invariant being protected by {2 000}110 , the (110) 
surface must have 2 (mod 4) Dirac nodes. In fact, the two kinds of surface states 
are consistent with each other: at an even filling number, which is necessary for an 
insulator in the presence of time-reversal symmetry, the two hourglass crossings 
protected by glide symmetry also play the role of Dirac nodes for the rotation 
invariant. Therefore the (110)  surface has a C2-symmetric hourglass mode. The 
(110) surface has a similar surface state because it is equivalent with the (110)  
surface.

Now let us briefly describe how we calculate the mirror Chern number. First, the 
parallelogram spanned by G1 and G2 (Extended Data Fig. 2a) is recognized as the 
minimal periodic cell in the mirror plane, wherein G1 is along the (110) direction 
and G2 is along the (111) direction (G1 and G2 are reciprocal lattice basis vectors). 
We therefore calculate the mirror Chern number within this parallelogram. For 
each point along the Γ G1 line, kG1, we define a Wilson-loop matrix as:
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where N is a large enough integer to describe the infinite limit; ∣ ⟩un k,  is the periodic 
part of the Bloch wavefunction; n, n′, ni are the valence-band indices; and V̂

G2 is 
the embedding operator61. For each kG1 we can define the mirror representation 
matrix as:

∣ ∣=′ ′kM u M u( ) ˆ
kG kGn n n n, , ,1 1

where M̂ is the operator of symmetry operation m{ 0}110 . One can prove that M(k) 
always commutes with W(k). Therefore, we can project the Wilson-loop matrix 
into the subspace having mirror eigenvalue +i; the mirror Chern number is then 
given simply by the winding number of the projected Wilson loop. In Extended 
Data Fig. 2b, we plot the eigenvalues of the projected Wilson-loop matrix as a 
function of k, from which one can find that the winding number is 0.
Ranking candidate materials. We rank the candidates in each class of topological 
materials with each space group by their density of states at the Fermi energy, from 
low to high, in Supplementary Tables I–V. For materials having zero density of 
states, we rank them by the size of the energy gap, from large to small. The density 
of states is obtained from a non-self-consistent calculation by using a Γ-centred 
Monkhorst–Pack grid with 40 k-points per Å−1, the tetrahedron method for 

Brillouin zone integrations, and a number of 5,000 grid points in energy from Ef 
−4 eV to +4 eV (where Ef is the Fermi energy for a material). The gap is extracted 
from the density-of-states profile, by finding the gap between the tails of the con-
duction and the valence bands. To be specific, we first find the highest unoccupied 
energy levels in presence of ±10−3 additional electrons per unit cell, and then 
calculate the gap as the difference of these two levels. The momentum grid that we 
use for the self-consistent calculation is not large enough to extract an accurate 
density of states at the Fermi energy, nor is it sufficient to resolve fine features in 
the density of states as a function of energy. The standard of zero density of states 
at the Fermi energy applies well to finding good topological insulators and topo-
logical crystalline insulators. However, for topological semimetals, this simple 
standard is not very reliable. Nodal-point semimetals—such as Weyl and Dirac 
semimetals—should ideally have a Fermi surface that shrinks to discrete points, 
and the density of states near the Fermi energy should scale as −~ E E( )f

2 . 
Therefore, it is the functional behaviour, rather than the absolute values, of the 
density of states that distinguish these semimetal states. Our calculation, as stated 
above, does not have sufficiently large momentum sampling to reliably extract such 
functional behaviours. For nodal-line semimetals, the standard is even more irrel-
evant, as the density of states of ideal nodal-line semimetals should be linearly 
dependent on the length of the nodal line, which is unknown a priori. We comment 
that the calculated density of states, and the ranking therein, should only be used 
as a reference in selecting candidates from the classes of HSPSM, HSLSM and 
GMSM for further research.
Topology beyond eigenvalue diagnosis. Our method, based on the theoretical 
tools developed in refs 25–28,30, is an eigenvalue diagnostic scheme, first introduced 
in refs 25,26. In ref. 26, it is proved that all of the symmetry eigenvalues at high- 
symmetry points in a band structure can be mapped to a certain element in a finite 
group called the symmetry-based indicators. The group structures of indicators 
are derived in ref. 26, and their explicit expressions in refs 27,28,30. The indicators for 
each space group, if they exist, are a set of several Zn numbers, and they (roughly 
speaking) quantify how any given symmetry data differ from those of an atomic 
insulator with the same crystal structure.

The symmetry indicators have the following properties: first, if any indicator  
is non-zero, the material is not an atomic insulator, that is, it is topologically  
nontrivial; second, two materials with different indicators are topologically distinct; 
and third, the topological distinction between two materials that have the same 
indicators cannot be diagnosed using symmetry data. We note that the third point 
means that all information on topology that may be extracted from symmetry data 
has been contained in the values of indicators. One should be aware that the third 
point implies that there are different topologies that cannot be distinguished using 
indicators. This is most easily seen in the example of mirror Chern numbers: ref. 28 
proves that if two systems have the same indicators, they may differ in the mirror 
Chern number by 2n, where n is the order of rotation symmetry in the system. In 
fact, refs 27,28 show that mapping from indicators to invariants is one-to-many in 
general: one given set of indicators maps to several inequivalent sets of topological 
invariants. Physically, this is because the band inversions can in principle happen 
away from any high-symmetry point; and given that band inversions may change 
the topology, there can be two topologically distinct band structures that have iden-
tical eigenvalues at all high-symmetry points, rendering powerless any eigenvalue 
diagnostic scheme. For the same reason, the materials that have zero indicators 
are not necessarily topologically trivial: we can only say that their topology, if any, 
is undetectable using our method or any eigenvalue diagnosis.

Data availability
All results are available and searchable with an interactive user interface at http://
materiae.iphy.ac.cn. Codes for obtaining the irreducible representations are  
available from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Nodal-ring configuration in BaC20 (nsoc 
setting). This material is in space group Pm3n. a, The three equivalent 
nodal rings in the = =k i x y z0( , , )i  planes, protected by the mirror 

symmetries on these planes. b, The six equivalent nodal rings in the 
± = = ≠k k i j x y z i j0( , , , , )i j  planes, protected by the glide symmetries on 

these planes.
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Extended Data Fig. 2 | Topological invariants and surface states of 
Zr(TiH2)2. a, Brillouin zone for Zr(TiH2)2, in which the yellow plane is 
m110. b, Wilson loop for Zr(TiH2)2 in the m110 plane. c, One-dimensional 

helical modes in a cubic Zr(TiH2)2 sample. d, Two-dimensional surface 
states on each surface of a cubic Zr(TiH2)2 sample.
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Extended data table 1 | Possible invariants for space group 227

Ζ2,2,2,4 weak m(2)
010 g001 g001 g101 2001 2011 i 2001

_
1 20111 40011 40013 4001

0002 000 2 1 1 1 0 0 1 10 0 0 0
0002 000 0 1 1 0 0 1 1 00 1 1 1
0000 000 2 0 0 1 0 1 0 10 1 1 1
0000 000 0 0 0 0 0 0 0 00 0 0 0

1_
4
1_
40

1_
4
1_
2

-1_
4
1_
40

-1_
4

Z2,2,2,4 are the four symmetry-based indicators. The remainder of the labels in the top row refer 
to topological invariants protected by various lattice symmetries as defined in ref. 27, in which: 
‘weak’ denotes weak topological indices; m(2)

010 shows the mirror Chern number which takes a 
value between −1 and +2, protected by the (010)-mirror plane; Gabc

mnl denotes the Z2 invariant 
protected by a glide plane perpendicular to the mnl direction with glide vector abc; i is the Z2 
invariant protected by inversion symmetry about the origin; and nk

mnl is the Z2 invariant protected 
by an n-fold rotation about the mnl direction followed by a translation along the same direction 
through the k/n lattice vector.
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